Abstract:
A method for designing an optical device which includes a lens and a microlens array is disclosed. A point spread function (PSF) of the lens including rotationally symmetrical aberration coefficients is formulated, wherein the PSF presents various spherical spot sizes. A virtual phase mask having phase coefficients is provided and the phase coefficients are added to the PSF of the lens, such that the various spherical spot sizes are homogenized. The virtual phase mask is transformed into a polynomial function comprising high and low order aberration coefficients. A surface contour of the lens is determined according to the rotationally symmetrical aberration coefficients and the low order aberration coefficients, and a sag height of each microlens in the microlens array is determined according to the high order aberration coefficients. An optical device using the design method is also disclosed.
Abstract:
Image capture lens modules and image capture systems are presented. An image capture lens module includes a first compound lens with a first lens element, a second lens element, and a third lens element arranged in sequence from an object side to an image side. A second compound lens includes a fourth lens element, a fourth lens element, and a fifth lens element arranged in sequence from an object side to an image side. A curvature radius of the first lens element is positive, a curvature radius of the third lens element is negative, a curvature radius of the fourth lens element is negative, and a curvature radius of the sixth lens element is negative. An abbe number of the first lens element exceeds 55 and an abbe number of the third lens element is less than 30.
Abstract:
An electronic assembly for an image sensing device is disclosed, comprising an image sensing element, a lens set comprising a feet enclosing a cavity to receive the image sensing element and an opaque conductive layer disposed on at least a portion of a top side, a sidewall and a bottom side of the lens set, wherein the opaque conductive layer is electrically connected to a grounding layer to reduce electromagnetic interference (EMI) to the image sensing element.
Abstract:
A miniature image capture lens is disclosed, comprising a wafer scale lens system, which comprises a first lens group including a first substrate, a first surface disposed on a first side of the first substrate, a second surface disposed on a second side of the first substrate, and a second lens group including a second substrate, a third surface disposed on a first side of the second substrate, and a fourth surface disposed on a second side of the second substrate, wherein the first surface, the second surface, the third surface and the fourth surface are aspherical, one of the first surface and the second surface, and one of the third surface and the fourth surface have a high refraction index Nd_h and a high abbe number Vd_h, another one of the first surface and the second surface, and another one of the third surface and the fourth surface have a low refraction index Nd_l and a low abbe number Vd_l, and the miniature image capture lens meets the following conditions: Nd—h=1.58˜1.62; Nd—l=1.48˜1.53; Nd—l/Nd—h=0.91˜0.97; Vd—h=35˜45; Vd—l=25˜35; and Vd—l/Vd—h=1.2˜2.2, wherein one of the first and second surfaces is convex shaped and another one of the first and second surfaces is concave shaped, and one of the third and fourth surfaces is convex shaped and another one of the third and fourth surfaces is concave shaped.
Abstract:
A miniature image capture lens is disclosed, comprising an aperture diaphragm having an aperture through which an image is captured and a wafer-level lens system, comprising a first lens group including a first substrate, a first lens disposed on a first side of the first substrate and a second lens disposed on a second side of the first substrate, and a second lens group including a second substrate, a third lens disposed on a first side of the second substrate and a fourth lens disposed on a second side of the second substrate. The first lens, the second lens, the third lens and the fourth lens are aspherical and the miniature image capture lens meets the following condition: L/fe
Abstract translation:公开了一种微型图像拍摄透镜,包括具有孔径的孔径光阑,通过该孔径捕获图像,晶片级透镜系统包括第一透镜组,第一透镜组包括第一基板,第一透镜,设置在第一 衬底和设置在第一衬底的第二侧上的第二透镜,以及包括第二衬底的第二透镜组,设置在第二衬底的第一侧上的第三透镜和设置在第二衬底的第二侧上的第四透镜 。 第一透镜,第二透镜,第三透镜和第四透镜是非球面的,并且小型图像拍摄透镜满足以下条件:L / fe <1.6; f1 / fe = 0.5〜1.5; f2 / fe = -1〜3; Tgroup2 / TBFL = 0.8〜1.2; Tair / Tlens2 = 0.4〜0.8; L:从第一透镜到图像平面的总轨迹长度(TTL)fe:整个透镜系统的有效焦距f1:第一透镜的有效焦距f2:第二透镜的有效焦距T group2:第二透镜的厚度 组Tair:第二透镜和第三透镜之间的距离TBFL:从最后一个透镜表面到图像平面的后焦距。
Abstract:
A laser scanning unit mainly includes a semiconductor laser, a collimator, a micro electronic mechanic system (MEMS) oscillatory mirror, and an fθ lens or an fsin θ lens. The MEMS oscillatory mirror is disposed between the collimator and the fθ lens to replace a conventional rotary polygonal mirror for controlling a direction in which laser beams are projected from the oscillatory mirror to the fθ lens. With the MEMS oscillatory mirror, the cylindrical lens may be omitted from the laser scanning unit and noises produced by the polygonal mirror rotating at high speed may be avoided. Moreover, the MEMS oscillatory mirror allows bi-directional scanning to therefore enable increased scanning frequency, simplified structure, and improved scanning efficiency.
Abstract:
A structure facilitating easy assembly of fiber-optic communication components includes a lower and an upper support being provided with small and big V-shaped cuts, respectively, for receiving optical fibers and collimators, respectively. The upper support is inverted to seat on a middle recess of the lower support, such that tangent planes passing top points of the optical fibers and the collimators are contained in horizontal planes passing openings of the small and the big V-shaped cuts, respectively, and axes of the collimators are either in alignment with or horizontally coplanar with axes of the optical fibers. The two supports together define a central positioning cavity between them for receiving different function elements, such as optical isolator, modularized filter, etc., between the collimators, so that fiber-optic communication components with reduced volume and increased reliability could be easily assembled in mass production at reduced cost.
Abstract:
An apparatus includes an image sensor including N image sensor regions arranged thereon. N lens structures are included in a lens array disposed proximate to the image sensor. Each one of the N lens structures is arranged to focus a single image onto a respective one of the N image sensor regions. The N lens structures include a first lens structure having a red color filter, a second lens structure having a green color filter, and a third lens structure having a blue color filter. Each one of the N lens structures includes a glass wafer and a lens formed on the glass wafer. Each one of the red color filter, the green color filter, and the blue color filter is one of coated on the glass wafer underneath the lens and coated over the lens on the glass wafer.
Abstract:
The invention provides a compact camera module and a method for fabricating the same. A compact camera module includes an image sensor device package. A back spacer ring is disposed on the image sensor device package. A first edge of the back spacer ring is aligned to a second edge of the image sensor device package. An optical lens plate disposed over the back spacer ring. A front spacer ring is sandwiched between the back spacer ring and the optical lens plate. A third edge of the front spacer ring is aligned to a fourth edge of the optical lens plate.
Abstract:
An image capture lens module includes a first compound lens with a first lens element, a second lens element, and a third lens element arranged in sequence from an object side to an image side. A second compound lens includes a fourth lens element, a fourth lens element, and a fifth lens element arranged in sequence from an object side to an image side. A cover glass for an image sensor is positioned behind the second compound lens, wherein the first compound lens, the second compound lens and the cover glass are arranged in sequence from an object side to an image side.