摘要:
A laser optical touch control module includes a light emitting part with a laser light source and a light receiving part with a position sensor. A laser beam is emitted from the laser light source and reflected by a wide angle optical element. Thus a light fan of the reflected light is larger than 90 degrees to form a wide angle linear light beam. The position of a touch control widget is obtained by a sensor of the light receiving part that detects the linear light beam blocked and reflected by the touch control widget. An analog-to-digital conversion system includes a variable reference level generator that calculates to generate a variable reference level according to different variances. Then the sensor output data is converted into a digital signal based on the reference voltage level by a digital comparator and the digital signal is output to a processor.
摘要:
A laser optical touch control module includes a light emitting part with a laser light source and a light receiving part with a position sensor. A laser beam is emitted from the laser light source and reflected by a wide angle optical element. Thus a light fan of the reflected light is larger than 90 degrees to form a wide angle linear light beam. The position of a touch control widget is obtained by a sensor of the light receiving part that detects the linear light beam blocked and reflected by the touch control widget. An analog-to-digital conversion system includes a variable reference level generator that calculates to generate a variable reference level according to different variances. Then the sensor output data is converted into a digital signal based on the reference voltage level by a digital comparator and the digital signal is output to a processor.
摘要:
A laser device applied to a light source of laser scanning units (LSU) including a laser diode disposed on an accommodation hole of a flange. A collimator lens is arranged on one end of an inner tube part of a holder while the other end of the inner tube part faces the laser diode. The laser beam passes through the inner tube part of the holder and the collimator lens, then projects out. A lug extends radially from outer surface of the holder and a plurality of axial guide slots are disposed on the lug. A plurality of guide pins corresponding to the guide slots are arranged on the flange. An adhesive is located between the guide pins and the guide slots and spaced apart from the collimator lens.
摘要:
An in-line laser scanning unit (LSU) with multiple light beams is disclosed. The LSU includes a minimized in-line mirror set composed by a plurality of vertically stacked Micro Electronic Mechanical System (MEMS) oscillatory mirrors and a linear corresponding scanning lens set formed by a plurality of F-Sin θ lens stacked vertically so as to correct the variation of reflective angle of the oscillatory mirror that is sinusoidal in time. Thus the scanning speed of multiple laser beams on the image plane is constant. Therefore, the volume of color printers is effectively reduced and the scanning efficiency is improved when the LSU in accordance with the present invention is applied to the optical engines of color printers.
摘要:
A laser device applied to a light source of laser scanning units (LSU) includes a laser diode disposed on an accommodation hole of a flange. A collimator lens is arranged on one end of an inner tube part of a holder while the other end of the inner tube part faces the laser diode so that the laser beam passes through the inner tube part of the holder and the collimator lens, then projects out. A lug extends radially from outer surface of the holder and a plurality of axial guide slots is disposed on the lug. A plurality of guide pins corresponding to the guide slots is arranged on the flange. By displacement between the guide pins and the guide slots, and adhesion of the UV-curing type adhesive, the laser diode and the collimator lens are assembled and calibrated. Thus the adhesion strength is enhanced and prevent the collimator lens from contacting the adhesive while coating the UV-curing type adhesive by conventional techniques.
摘要:
A laser scanning unit mainly includes a semiconductor laser, a collimator, a micro electronic mechanic system (MEMS) oscillatory mirror, and an fθ lens or an f sin θ lens. The MEMS oscillatory mirror is disposed between the collimator and the fθ lens to replace a conventional rotary polygonal mirror for controlling a direction in which laser beams are projected from the oscillatory mirror to the fθ lens. With the MEMS oscillatory mirror, the cylindrical lens may be omitted from the laser scanning unit and noises produced by the polygonal mirror rotating at high speed may be avoided. Moreover, the MEMS oscillatory mirror allows bi-directional scanning to therefore enable increased scanning frequency, simplified structure, and improved scanning efficiency.
摘要:
A MEMS oscillating laser scanning unit (LSU) composed of a MEMS Control Module, a Pre-scan Module and a Post-scan Module is disclosed. The MEMS Control Module consists of a laser source and a MEMS oscillating mirror. The laser source and the MEMS oscillating mirror both are aligned with the same side, opposite to target surface so that laser beam emits from the side of the target surface, reverses by a reflection mirror of the Pre-scan Module and then moves along a plane formed by a central axis as well as an oscillatory rotary axis of the MEMS oscillating mirror, enters center of the MEMS oscillatory mirror. Thus, scanning spots on the target surface are all symmetrical to the central axis. Thus effective area of the MEMS oscillating mirror is reduced and further reduce the cost as well as improve scanning efficiency. Moreover, design of the fθ Lens is simpler and the volume of the LSU is reduced.
摘要:
An in-line laser scanning unit (LSU) with multiple light beams is disclosed. The LSU includes a minimized in-line mirror set composed by a plurality of vertically stacked Micro Electronic Mechanical System (MEMS) oscillatory mirrors and a linear corresponding scanning lens set formed by a plurality of F-Sin θ lens stacked vertically so as to correct the variation of reflective angle of the oscillatory mirror that is sinusoidal in time. Thus the scanning speed of multiple laser beams on the image plane is constant. Therefore, the volume of color printers is effectively reduced and the scanning efficiency is improved when the LSU in accordance with the present invention is applied to the optical engines of color printers.
摘要:
A diffraction laser encoder apparatus for positional and movement information measurement of a target made with a diffraction grating. The diffraction laser encoder has a laser light source for generating a source beam. A polarization beam splitter assembly comprises a polarization beam splitter for receiving the source beam for splitting a P-polarization component and an S-polarization component of the source beam into parallel and offset beams. A focusing lens focuses the P-polarization component and the S-polarization component beams onto the target diffraction grating and returning diffracted P-polarization and diffracted S-polarization beams back into the polarization beam splitter for generating a detector beam coaxially containing the diffracted P-polarization and the diffracted S-polarization beams. A detector assembly receives the detector beam for electrical processing and analysis for resolving the positional and movement information. In the process, phase information contained in the diffraction signal returned by the target is analyzed.
摘要:
A display device is revealed. The display device includes a laser source for emitting a laser beam, a pre-optics for processing the laser beam, a light scan member such as a MEMS mirror for converting the processed laser beam into a scanning light beam, and/or a corresponding post-optics. A switch-control beam splitter is disposed on the light path of the laser beam, after the light scan member so as to divide the scanning light beam into a reflected light beam and a transmitted light beam. They are two different light paths and generate a virtual image as well as a real image respectively.