Abstract:
Methods and apparatuses for a free-space multi-dimensional absolute pointer using a projection marker system are described herein. In one embodiment, a presentation system includes, but is not limited to, a projection-based marker apparatus to project one or more optical spots on a display surface for displaying machine generated content capable of being manipulated via a cursor of a pointing device, a handheld device to wirelessly capture the projected optical spots from the display surface, and a control unit communicatively coupled to the projection-based marker apparatus and the handheld device to determine coordinates of the cursor based on characteristics of the captured light spots. Other methods and apparatuses are also described.
Abstract:
According to one embodiment, a system includes a handheld device having a pixelated sensor, an optical filter for passing a predetermined frequency band of radiation to the sensor and a transmitter, an electronic equipment having a display, and at least two spaced-apart markers, where each of which are positioned proximate to the display. The markers provide radiation at the frequency band passed by the optical filter. The handheld device includes a processor coupled to receive image data of the markers from the sensor for computing coordinate data from the image data. The coordinate data requires less data than the image data. The processor is coupled to the transmitter to transmit the coordinate data to the electronic equipment. Other methods and apparatuses are also described.
Abstract:
A method is described that involves identifying one or more images of respective one or more fixed markers. Each marker is positioned on or proximate to a display. The images appear on a pixilated sensor within a handheld device. The method also involves determining a location on, or proximate to, the display where the handheld device was pointed during the identifying. The method also involves sending from the handheld device information derived from the identifying of the one or more images of respective one or more fixed markers. The method also involves triggering action taken by electronic equipment circuitry in response to the handheld device's sending of a signal to indicate the action is desired.
Abstract:
An item of electronic equipment is described that includes a machine and executable program code. The executable program code is stored on a non volatile memory. The executable program code is to be executed by the machine. The executable program code is to perform a method. The method is in relation to a location on a display, or proximate to the display, that is pointed to by a handheld device. The method includes executing at least one of the following methods: (i) displaying a cursor on said display at said location, said location on said display; (ii) highlighting a menu option on said display at said location, said location on said display; (iii) triggering action taken by said electronic equipment in response to said handheld device's sending of a signal to indicate said action is desired.
Abstract:
A variable-reflective tunable optical filter includes an interferometer adapted to control the powers of added or dropped signals and an optical waveguide grating to select the wavelength channels of the added or dropped signals. The waveguide grating is tunable to filter a dropped signal from an input data stream and filter an added signal into an output data stream. While a reflection band of the waveguide grating is being adjusted to tune a wavelength channel, the phase of at least one leg of the interferometer may be adjusted to direct signals of any wavelength channel selected by said waveguide from the input data stream to the output data stream, thereby providing hitless optical add-drop multiplexing.
Abstract:
A planar light wave circuit may be formed with a pair of waveguides arranged in close proximity to one another. At least one of the waveguides may be segmented. Through segmentation, the average mode-field diameter may be adjusted. Controlling the average mode-field diameter enables precise control over the coupling characteristics.