Abstract:
Embodiment of present invention provide an optical subassembly that includes a first, a second, and a third band filter (BF) each having a common port (CP), a port-A (PA), and a port-B (PB). The PA of the second BF is connected to the PA of the third BF and the PB of the first BF is connected to the PB of the third BF. The optical subassembly is adapted to route a first optical signal of a blue band from the PA to the CP of the first BF; to route the first optical signal from the CP of the second BF to the CP of the third BF; to route a second optical signal of a red band from the CP of the third BF to the CP of the first BF; and to route the second optical signal from the CP to the PB of the second BF.
Abstract:
An optical apparatus, comprising a semiconductor substrate, a dielectric layer located on the semiconductor substrate, wherein a membrane portion of the dielectric layer is located over a cavity in a surface of the semiconductor substrate, a resistive heater located on the membrane portion, the resistive heater being controllable by a current applied to the resistive heater and an etalon optical filter located on the resistive heater and over the cavity, an optical passband of the etalon optical filter being wavelength tunable by the resistive heater. A method of manufacturing the optical apparatus is also disclosed.
Abstract:
A single-ended output circulator includes a three-core optical fiber head having first, second, and third optical fiber cores; a walk-off crystal having a first surface facing towards the second end of the three-core optical fiber head tube and a second surface facing away from the second end of the three-core optical fiber head tube; a plurality of half-wave plates each having a first surface coupled to the second surface of the walk-off crystal and a second surface facing away from the second surface of the walk-off crystal; a collimating lens having a first end and a second end; a reflection mirror configured to reflect light beams from the collimating lens; an optical prism between the collimating lens and the reflection mirror and configured to transmit a light beam along a propagation direction according to a polarization direction of the light beam; and a polarization rotator.
Abstract:
A terahertz (THz) switch consisting of perfect conductor metamaterials is discussed in this invention. Specifically, we have built a THz logic block by combining two double-sided corrugated waveguides capable of slowing down the electromagnetic waves in the THz regime with a sub-wavelength cavity, having one or more grooves with shorter height than the grooves of the periodic corrugated waveguide. This new type of THz structure is called as the waveguide-cavity-waveguide (WCW). The new invention is based on our mathematical modeling and experimentation that confirms a strong electromagnetic field accumulation inside the tiny cavity which can confine EM field for a long time within a very small effective volume (Veff) to provide high quality (Q) factor. Therefore, an efficient THz switch can be designed to achieve ON-OFF switching functionality by modulating the refractive index n or extinction coefficient α inside the switching junction. The dimensions of the periodic structure and cavity can be optimized to apply the invention to slow-EM wave devices working at other frequencies in the EM spectrum including the microwave and outside the THz domain which is generally accepted as from 0.3 THz to 3 THz.
Abstract:
In a method and system for providing dispersion compensation in an optical system, there is coupled into the optical system at least one pathway into which there is connected a tunable chirped fiber Bragg grating, each such grating providing a respective tunable amount of dispersion. At least one respective DGD element is connected into the respective pathway for each such grating. The set of all such respective DGD elements in a given pathway introduces a bias differential group delay DGD(bias) having an absolute value that, for at least one tuning value of the grating, is substantially equal to differential group delay introduced by the grating.
Abstract:
An exemplary embodiment of the present invention includes an optical circulator. The circulator may have, for example, a first port, a second port, and a third port. The first port may be configured to introduce light into the optical circulator. The system may also include a tunable fiber filter Bragg grating connected to the second port of the circulator and a tunable dispersion-compensating fiber Bragg grating connected to the third port of the optical circulator. The tunable dispersion compensating fiber Bragg grating and the tunable fiber filter Bragg grating may be configured to be tuned by a single actuator. This tuning may be either compression or strain tuning.
Abstract:
Method and apparatus are disclosed for optical packet decoding, waveform generation, and wavelength multiplexing/demultiplexing using a programmed holographic structure. A configurable programmed holographic structure is disclosed. A configurable programmed holographic structure may be dynamically re-configured through the application of control mechanisms which alter operative holographic structures.
Abstract:
An optical splitter (1) includes a circulator (10) and a dynamic FBG (Fiber Bragg Grating) (20) which can achieve different reflection ratios corresponding to the size of a current in the dynamic FBG. The circulator has three ports. One port (P0) connects with an input optical fiber, one port (P3) connects with the dynamic FBG, and the third port (P2) connects with an output optical fiber. Light input from the circulator to the dynamic FBG and is dynamically split into two beams. One beam is output from an output port (P1) of the dynamic FBG, the other beam is reflected by the dynamic FBG and is output from the output port (P2) of the circulator.
Abstract:
Method and apparatus are disclosed for optical packet decoding, waveform generation and wavelength multiplexing/demultiplexing using a programmed holographic structure. A configurable programmed holographic structure is disclosed. A configurable programmed holographic structure may be dynamically re-configured through the application of control mechanisms which alter operative holographic structures.
Abstract:
A method and apparatus that microbend a fiber Bragg grating with a transverse acoustic wave. The fiber Bragg grating reflects one or more Nth order sidebands of reflection wavelengths an optical signal in order to couple the band of wavelenghts within from a first mode to a second mode.