Abstract:
The present invention relates to a SCC with improved mobility of material to be removed due to a wider distance between the upper stages than a distance between the lower stages. The present invention provides a SCC (Spinning Cone Column) comprising a housing having a rotation axis; a supply part of at least one reactant formed inside of the housing; at least two spinning cones that are installed so as to have a constant gradient from the upper part to the lower part to the rotation axis, move reactants supplied through the reactant supply part, and rotate around the rotation axis; a fixed cone that is fixed and formed on the inner side of the housing, and provides a pathway for sequentially moving reactant from a spinning cone at the upper part to a spinning cone at the lower part; a product collection part for collecting reactants moved through the spinning cone and the fixed cone; and a driving part for rotating the spinning cone, wherein at least one distance between the upper stages is wider than a distance between the lower stages, when one pair of the spinning cone and the fixed cone is referred to as a stage. The SCC according to the present invention may improve mobility of material to be removed because at least one distance between the upper stages is wider than a distance between the lower stages.
Abstract:
There are provided a dividing wall distillation column for producing high-purity acrylic acid, and a fractional distillation method using the same. The dividing wall distillation column includes a condenser, a reboiler and a main column having a dividing wall. Here, the main column is divided into a column-top zone, an upper feed zone, an upper outflow zone, a lower feed zone, a lower outflow zone and a column-bottom zone. Also, a crude acrylic acid raw material (F) flows in a middle inflow plate NR1 in which the upper feed zone and the lower feed zone come in contact with each other, a low boiling point component (D) flows out from the column-top zone, a high boiling point component (B) flows out from the column-bottom zone, and a middle boiling point component (S) flows out through a middle outflow plate NR2 in which the upper outflow zone and the lower outflow zone come in contact with each other. In this case, the middle boiling point component is acrylic acid. Accordingly, since one distillation column can be used to realize the same effect as that obtained from the use of two distillation columns, the dividing wall distillation column can have an effect of reducing the costs of equipment to produce high-purity acrylic acid, as well as an energy-reducing effect, compared to a conventional process system.
Abstract:
The present invention provides an apparatus for recovering a polymer from polymer solution, and a method of recovering a polymer using the apparatus. The apparatus includes a polymer solution-storage tank for storing a polymer solution; a polymer solution feeding pump for pumping the polymer solution from the polymer solution storage tank; an antisolvent storage tank for storing an antisolvent; an antisolvent feeding pump for pumping the antisolvent from the antisolvent storage tank; a reaction chamber to which the polymer solution pumped by the polymer solution feeding pump and the antisolvent pumped by the antisolvent feeding pump are supplied; a high-speed mixer that is rotated in the reaction chamber at a speed range of 1000 to 30000 rpm, mixes the polymer solution with the antisolvent under a shearing force corresponding to a tip speed of 5 to 30 m/sec, and precipitates a polymer; and a precipitate storage tank for storing the precipitation mixture of the polymer and the solvent/antisolvent.