Abstract:
A multi-display apparatus includes a plurality of panels connected to each other and displaying an image, wherein the plurality of panels comprise a top emission type display apparatus and a bottom emission type display apparatus, and the top emission type display apparatus and the bottom emission type display apparatus are connected to each other such that the top emission type display apparatus and the bottom emission type display apparatus emit light in a same direction, and the top emission type display apparatus and the bottom emission type display apparatus are arranged with a step difference therebetween such that pixel boundaries of adjacent side boundary surfaces of the top emission type display apparatus and of the bottom emission type display apparatus overlap each other.
Abstract:
An organic electro-luminescent display (“OELD”) and a method of manufacturing the OELD include: a substrate; a plurality of anodes substantially parallel with one another in a first direction and disposed on the substrate; a plurality of cathodes disposed substantially parallel with one another in a second direction orthogonal to the first direction; organic electro-luminescent parts disposed at intersections between the anodes and the cathodes; a plurality of cathode separators each disposed between the cathodes; and gaps separating lower edges of the cathode separators facing the cathodes from the substrate.
Abstract:
A method of fabricating a black matrix of a color filter is provided. In the method, a black matrix layer formed of a hydrophobic organic material is formed on an upper surface of a transparent substrate. A black matrix is formed by patterning the black matrix layer. Side surfaces of the black matrix are made hydrophilic by irradiating a lower surface of the transparent substrate with ultraviolet rays while heating the black matrix. A black matrix provided by the method is also disclosed.
Abstract:
A monolithic ink-jet printhead, and a method of manufacturing the same, includes a substrate having an ink chamber, an ink channel, and a manifold, a nozzle plate formed on the substrate, a nozzle, a heater, and a conductor. The ink chamber includes sidewalls formed to a predetermined depth from the front surface of the substrate for defining side surfaces of the ink chamber and a bottom wall formed parallel to the front surface of the substrate at the predetermined depth from the front surface of the substrate for defining a bottom surface of the ink chamber. The nozzle plate includes a plurality of passivation layers, a heat dissipating layer being stacked on the passivation layers, and the nozzle for ejecting ink out of the printhead. The heater is positioned above the ink chamber and heats ink in the ink chamber and the conductor delivers a current to the heater.
Abstract:
A micromirror actuator having a micromirror, which is operative using an electrostatic force with a low voltage and wherein an electrostatic force opposite to the driving force of the micromirror is blocked, and a method for manufacturing the same, are provided. The micromirror actuator includes a substrate, a trench in which at least one electrode is formed, supporting posts installed at opposite sides of the trench, a torsion bar supported by the supporting posts, and the micromirror including a driving unit which faces the trench when the micromirror is in a horizontal state, and a reflecting unit, which is elastically rotated about the torsion bar, to reflect an optical signal. The actuator also includes a shielding electrode installed to face the reflecting unit when the micromirror is in a horizontal state and to block an electrostatic force occurring between the reflecting unit and the electrode.