Abstract:
An electrodeless plasma lamp apparatus includes a waveguide body having at least a first material and a second material. At least one of the materials has a dielectric constant of less than two. In a specific embodiment, the apparatus also includes an RF power source coupled to the waveguide body to provide RF power to the waveguide body at least one frequency that resonates within the waveguide body. A bulb containing a fill which forms a plasma to cause emission of light when the RF power is provided to the waveguide body.
Abstract:
The present invention is directed to devices and methods for generating light with plasma lamps. More particularly, the present invention provides plasma lamps driven by a radio-frequency source without the use of electrodes inside the bulb and related methods. In a specific embodiment, a coaxial type coupling module is used to drive an electrodeless bulb. Merely by way of example, such plasma lamps can be applied to applications such as stadiums, security, parking lots, military and defense, street lighting, large and small buildings, vehicle headlamps, aircraft landing, bridges, warehouses, UV water treatment, agriculture, architectural lighting, stage lighting, medical illumination, microscopes, projectors and displays, any combination of these, and the like.
Abstract:
Described is an electrode-less plasma lamp comprising a gas-fill vessel, a gas-fill contained within the gas-fill vessel, an RF electromagnetic radiation source, an RF electromagnetic resonator, an output probe that couples RF energy from the RF electromagnetic resonator to the gas-fill vessel, an input probe that couples RF energy from the RF electromagnetic radiation source to the resonator, and a grounding strap that holds a metal veneer surrounding the resonator and a portion of the gas-fill vessel at RF ground. Also described are many variations of the electrode-less plasma lamp, non-limiting examples of which include embodiments that employ other probes in a Dielectric Resonant Oscillator to drive the lamp, a lamp employing more than one resonator per gas-fill vessel, and many methods of improving light-harvesting, including raising the gas-fill vessel away from the resonator via a coaxial transmission line, and collecting light with an optical reflector.
Abstract:
An optical waveguide system with an electrodeless plasma lamp as the electromagnetic radiation source. The system includes an optic source coupling element that receives the electromagnetic radiation that is emitted from at least one electrodeless plasma lamp. The optic source coupling element is coupled to at least one optical waveguide element. The optical waveguide element includes at least one fiber optic cable that is capable of transmitting the emitted electromagnetic radiation. The fiber optic cable can be positioned such that the electromagnetic radiation is transmitted at a desired position away from the electrodeless plasma lamp source.
Abstract:
An RF electrodeless plasma lamp with improved efficiency in higher lumens per watt includes a waveguide body, in which an RF signal drives the entire structure at the resonant frequency of the structure. The resonant frequency of the structure is lowered by increasing the overall capacitance of the waveguide body by adding at least two layers of dielectric material between the input feed and the bulb of the lamp. The layered structure can include an air cavity disposed between a dielectric layer and the input feed. In lowering the resonant frequency of the lamp, the device is capable of using RF amplifiers that have higher efficiency, and thus has a higher lumens per watt ratio.
Abstract:
A plasma lamp includes a waveguide body which has at least one solid dielectric material. The body has a diameter and a length transverse to the diameter, with the diameter of the body being less than the length of the body. The lamp also has a power source configured to provide power to the body at a resonant frequency. The waveguide body has an effective length of at least portions of the diameter and the length.
Abstract:
An electrodeless plasma lamp apparatus includes a waveguide body having at least a first material and a second material. At least one of the materials has a dielectric constant of less than two. In a specific embodiment, the apparatus also includes an RF power source coupled to the waveguide body to provide RF power to the waveguide body at least one frequency that resonates within the waveguide body. A bulb containing a fill which forms a plasma to cause emission of light when the RF power is provided to the waveguide body.