Abstract:
A host server is configured to switch communications associated with an account between first and second mobile devices. The server stores a mapping of the account to a first PIN which identifies the first mobile device, and communicates messages via a wireless network based on the stored mapping using the first PIN for data synchronization therebetween. The server then receives a request for device switching. In response, the server switches the mapping of the account to a second PIN which identifies a second mobile device, and communicates messages via the wireless network based on the switched stored mapping using the second PIN for data is synchronization therebetween. The mapping of the account to the first PIN may be maintained even after switching the stored mapping to the second PIN, for a subsequent request for switching back to the first mobile device for the account.
Abstract:
A source device is initially enabled to maintain data synchronization with a host server over a wireless communication network via a first wireless transceiver for user data of an application program associated with a user account. To enable a target device, the source device is operative to establish a programming session with the target device via a second wireless transceiver. During the programming session, the source device causes user account data (e.g. an encryption/decryption key for the data-synchronized communications) for the user account to be transmitted to the target device via the second wireless transceiver. The user data associated with the application program may be transferred from the source device to the target device via a removable memory card such as a secure digital (SD) card.
Abstract:
A method for selecting a wireless local area network (“WLAN”) for a wireless device, comprising: generating a first list of WLAN identifiers for a first group of one or more wireless local area networks (“WLANs”) accessible at a first geographic location and storing the first list in the wireless device; generating a second list of WLAN identifiers for a second group of one or more WLANs accessible at a second geographic location and storing the second list in the wireless device; selecting one of the first and second lists as an active list; and, scanning for WLANs identified by the active list to identify an available WLAN for the wireless device.
Abstract:
To perform thread-based message prioritization, metadata may be extracted from a received electronic message. Based on the extracted message metadata and accumulated metadata extracted from previously received messages, a message thread to which the received electronic message belongs may be identified. Based on a set of thread priority assessment criteria, a priority level for the message thread may be determined. At least part of the message thread may be processed according to the priority level. The processing may be altering a notification behavior of an electronic messaging client for electronic messages of the message thread. Thread priority assessment may be based on user-configurable criteria that may be set via a graphical user interface. Message thread identification may also be based on user-configurable criteria that may be set via a graphical user interface.
Abstract:
A handheld electronic device, such as a GPS-enabled wireless communications device with an embedded camera, a GPS-enabled camera-phone or a GPS-enabled digital camera, determines whether ephemeris data needs to be obtained for geotagging digital photos taken with the device. By monitoring user activity with respect to the camera, such as activation of the camera, the device can begin pre-acquisition of a GPS position fix by obtaining needed ephemeris data before the photograph is actually taken. This GPS pre-acquisition improves the likelihood that a position fix (GPS lock) is achieved by the time the photo is taken (to enable immediate geotagging). Alternatively, the photo can be geotagged retroactively by appending the current location to the metadata tag associated with the digital photo. An optional acquisition status indicator can be displayed on a user interface of the device to indicate that a position fix is being obtained.
Abstract:
A wireless communications device includes a radiofrequency transceiver having a wireless voice channel for transmitting and receiving voice communications and a separate wireless data channel for concurrently transmitting and receiving other data. The wireless communications device also includes a memory operatively connected to a processor for processing current location data received over the data channel from another communications device with which the wireless communications device is simultaneously communicating on the voice channel. The wireless communications further includes a display for displaying a phone screen during a voice call, the phone screen presenting call-related information. A map is displayed on the phone screen during the voice call, the map presenting a location current of the other communications device based on the current location data received over the data channel. Optionally, the map can also show the current location of the wireless communications device.
Abstract:
To perform thread-based message prioritization, metadata may be extracted from a received electronic message. Based on the extracted message metadata and accumulated metadata extracted from previously received messages, a message thread to which the received electronic message belongs may be identified. Based on a set of thread priority assessment criteria, a priority level for the message thread may be determined. At least part of the message thread may be processed according to the priority level. The processing may be altering a notification behavior of an electronic messaging client for electronic messages of the message thread. Thread priority assessment may be based on user-configurable criteria that may be set via a graphical user interface. Message thread identification may also be based on user-configurable criteria that may be set via a graphical user interface.
Abstract:
A system for prioritizing and displaying received messages, including e-mail, SMS, IM, multimedia, and voicemail, at a communication device includes means for dynamically associating a priority value with a received message upon detection of an evaluation event, and means for dynamically updating a listing of received messages associated with at least a priority value equal to or greater than a predetermined priority value in a designated priority viewport. The viewport is constantly viewable in a message listing screen and comprises a listing of prioritized messages separate and apart from non-prioritized messages. Evaluation events may include user operation such as reading, deleting, replying, moving, or forwarding the message and similar operations, or a determination that the message has reached a predetermined age.
Abstract:
A processor-implemented method of operating a mobile communication device operable to execute one or more communication applications includes issuing a query for contact data over a communication network, creating a contact resolution object, receiving contact data responsive to the query over the communication network, the contact data comprising communication contact data for the one or more communication applications, associating the contact data received with the contact resolution object, and resolving the contact resolution object to select communication contact data.
Abstract:
Ephemeris data is downloaded intelligently to a GPS-enabled wireless communications device based on user activity rather than at fixed predetermined intervals. Ephemeris data can be downloaded to enable both Aided GPS and Assisted GPS. The device can download ephemeris data based on the frequency of requests into an API communicating with a GPS driver, based on the detection of a new network, or a change in time zone of the network time. Intelligent, adaptive downloading of ephemeris optimizes the usage of bandwidth and the data charge to the user while ensuring that ephemeris data is cached to provide assistance for location-based services such as turn-based navigation.