Abstract:
Various embodiments provide a method for improving crosswind stability of a propeller duct. The method comprises defining an initial duct section based on a predetermined airfoil section having an initial value of a geometric parameter such that the geometric parameter of a portion of the initial duct section has the initial value. The method also comprises determining fluid flow paths around the initial duct section when subject to a crosswind having a predetermined crosswind speed. The method further comprises varying the initial value of the geometric parameter of the initial duct section to a threshold value which causes separation of fluid flow paths at a windward side of the initial duct section at and above the predetermined crosswind speed to form an improved duct section. Various embodiments provide a corresponding apparatus, system and/or computer readable medium.
Abstract:
Disclosed herein is a collapsible wing assembly of an unmanned aerial vehicle (UAV) and a method of locking and unlocking the collapsible wing assembly of an unmanned aerial vehicle (UAV). The collapsible wing assembly comprising a centre wing adapted to be attached to the fuselage; and a pair of outboard wings, wherein each of the outboard edges of the centre wing comprises a first attachment structure, and each of the inboard edges of the outboard wings comprises a second attachment structure, wherein the first attachment structure is operable to engage with the second attachment structure and displace the second attachment structure to a captive position towards the trailing edge of the centre wing.
Abstract:
A seat leg assembly for a passenger seat includes a brace member to extend from a front end of a base frame of the passenger seat to a rear floor fitting; a front leg to extend from a front floor fitting to the brace member and connected to the brace member; a rear leg portion extending from a rear end of the base frame to the brace member; and a first joint structure connecting the rear leg portion to the brace member.
Abstract:
An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.
Abstract:
Disclosed herein is a collapsible wing assembly of an unmanned aerial vehicle (UAV) and a method of locking and unlocking the collapsible wing assembly of an unmanned aerial vehicle (UAV). The collapsible wing assembly comprising a center wing adapted to be attached to the fuselage; and a pair of outboard wings, wherein each of the outboard edges of the center wing comprises a first attachment structure, and each of the inboard edges of the outboard wings comprises a second attachment structure, wherein the first attachment structure is operable to engage with the second attachment structure and displace the second attachment structure to a captive position towards the trailing edge of the center wing.
Abstract:
Various embodiments provide a method for installing a seat suspension on a seat frame having a first side frame member and a second side frame member opposed to and spaced apart from each other. The method may include moving a retainer on a first side of the seat suspension in a direction substantially perpendicular to a plane defined by the first and second side frame members for fastening onto a support member on the first side frame member; and moving a retainer on a second side of the seat suspension in the direction substantially perpendicular to the plane defined by the first and second side frame members for fastening onto a support member on the second side frame member. The second side of the seat suspension is opposed to and spaced apart from the first side of the seat suspension.
Abstract:
A support structure for attachment to a tray table for a passenger seat, a tray table for a passenger seat, and a passenger seat. The support structure comprises a support arm shaped to substantially match at least a first portion of a peripheral contour of the tray table; and a connecting structure for connecting the support arm to the tray table in a manner such that the support arm is configurable into a stowed position in which the support arm extends substantially along said at least first portion of the peripheral contour of the tray table and at least one support position for supporting an item on the tray table in an angled orientation between a surface of the item and the surface of the tray table.
Abstract:
An apparatus and method for aerial recovery of an unmanned aerial vehicle (UAV) are provided. The apparatus includes a rigid base having a first section and a second section, wherein the first section is securely mounted to a floor of an aircraft. The apparatus further includes a servicing platform moveably mounted to the base and configured to move along a direction parallel to a longitudinal axis of the aircraft such that in an extended position, the servicing platform at least partially protrudes from a rear cargo door of the aircraft, wherein the servicing platform comprises a capturing mechanism configured to capture the UAV in the extended position.
Abstract:
A trailing boom system for aerial refueling and a method for aerial refueling of multiple receiver aircraft. The trailing boom system for aerial refueling includes a parent pod capable of being connected to a wing of an aircraft, and a detachable pod releasable from the parent pod, the detachable pod including an extendible boom for refueling aircraft in flight.