Abstract:
A transaction safe file system uses two sets of file allocation tables and bitmap images to perform file modifications on one of the sets while the other set remains a last known good set. After a modification is complete, a pointer is changed to the newly modified set, and the newly modified set becomes the last known good set. The sets are then synchronized. The file allocation table is used to define cluster chains while the bitmap image is used to determine if a cluster is free or not. In some operations, only the bitmap image may need to be manipulated. The file system may be used in a transaction safe mode as well as a non-transaction safe mode.
Abstract:
Directories in a file system are defined with a dummy cluster in a file allocation table as the initial entry. Subsequent clusters in a directory's definition may define any data for the directory that can be changed in a transaction-safe mode. A directory may be modified in a transaction-safe mode by modifying any of the subsequent clusters while tracking changes in a second file allocation table. When the changes have been made to the directory, a pointer to the second file allocation table may be switched to indicate that the second file allocation table is now last known good. The first file allocation table may then be synchronized with the second.
Abstract:
A transaction safe file system uses two sets of file allocation tables and bitmap images to perform file modifications on one of the sets while the other set remains a last known good set. After a modification is complete, a pointer is changed to the newly modified set, and the newly modified set becomes the last known good set. The sets are then synchronized. The file allocation table is used to define cluster chains while the bitmap image is used to determine if a cluster is free or not. In some operations, only the bitmap image may need to be manipulated. The file system may be used in a transaction safe mode as well as a non-transaction safe mode.
Abstract:
Concepts for enhancing operation of transaction-safe file allocation table systems are described. The concepts include writing a file to non-volatile memory media and rendering an update of file size to the TFAT storage medium; and receiving a request to locate data in a non-volatile memory having a TFAT file management system, selecting a sector of the memory to parse to locate the data, determining when the selected sector is a first sector of a directory or subdirectory of the memory and when determining reveals that the selected sector is a first sector, skipping reading data from the selected sector. The concepts also include flushing a cache and synchronizing FATs.
Abstract:
A transaction safe file system uses two sets of file allocation tables and bitmap images to perform file modifications on one of the sets while the other set remains a last known good set. After a modification is complete, a pointer is changed to the newly modified set, and the newly modified set becomes the last known good set. The sets are then synchronized. The file allocation table is used to define cluster chains while the bitmap image is used to determine if a cluster is free or not. In some operations, only the bitmap image may need to be manipulated. The file system may be used in a transaction safe mode as well as a non-transaction safe mode.
Abstract:
A transaction log for flash recovery includes a chained sequence of blocks specifying the operations that have been performed, such as a write to a sector or an erase to a block. Checkpoints are performed writing the entire flash state to flash. Once a checkpoint is performed, all of the log entries prior to the checkpoint are deleted and the log processing on recovery begins with the latest checkpoint. If the system is able to safely shutdown, then a checkpoint may be performed before the driver unloads, and on initialization, the entire persisted flash state may be loaded into the flash memory with a minimal amount of flash scanning. If a power failure occurs during system operation, then on the next boot-up, only the sectors or blocks specified in the log entries after the latest checkpoint have to be scanned, rather than all the sectors on the part.
Abstract:
The invention, which may be a kind of annotations processor, detects zero or more tagsets turned on or selected at runtime. The annotations adapter reads an abstract unit from a java file, and if an annotation of the abstract unit has a tag that is among the tags of a turned on tagset, then the annotations adapter may generate an artifact showing the influence of the annotation. Such a process may continue until there are no more abstract units to process. Comments or annotations that fail to be tagged with a tag of a selected tagset may, nevertheless, be mentioned with a kind of ‘place-holder’ indicating that such comments exist.
Abstract:
Disclosed herein are engineered zinc finger proteins which bind to telomeric structures; methods for their design, synthesis and use; and cells comprising a telomere-binding zinc finger protein. Methods for modulating telomerase activity using telomere-binding zinc finger proteins are also provided.
Abstract:
A system and method for retrieving class package name from a class file if not known or found by the Java class loader of the Java virtual machine at load time. An algorithm is derived which uses the class file to obtain the class package name by iterating the directory names of the class file in the user's current operating system. An output is provided to the user when the class package name is found and it is loaded by the Java class loader; when an error occurs after which the error message indicates that the prerequisite class of the class file is missing; or when the class package name itself is invalid.