Abstract:
An optical measurement device and method of use provides non-invasive physiological measurements from a predetermined location on a body part of a user. The optical measurement device provides an illumination and detection assembly configured to generate and detect light of a predetermined wavelength range in the form of a photoplethysmography (PPG) signal, as well as a pressure detection assembly configured to detect an amount of pressure applied to the measurement device by the user being measured. A feedback unit, such as a portable display device, provides the user real-time feedback of the detected PPG signal and level of applied pressure so that the user may adjust the amount of applied pressure to improve the quality of the detected PPG signal.
Abstract:
Permutation networks based on de Bruijn digraphs exhibit constant control complexity (wide sense non-blocking) and constant control complexity (self-routing). The cost in terms of the cross-points used for such networks is an optimal O(N log N). This non-blocking network uses fast algorithms to control in the Terabit bandwidth while providing for cost-effective switching. The network has expandable (i.e., scalable) architecture, i.e., the network can be built by interconnecting smaller non-blocking networks (e.g., small crossbars).