Abstract:
A constant current source, a measurement unit, an indication unit, and a controller are provided. The constant current source is connected to a shell of an electric device and configured to supply a constant current to the shell. The shell is connected to a ground line terminal of a power supply to which the electric device is connected. The measurement unit is configured for measuring a first voltage of the ground line terminal and a voltage between the shell and the ground line terminal. The controller is configured for controlling the indication unit to give warnings either when the first voltage is zero or when the second voltage is higher than a preset value.
Abstract:
A power cable is configured for connecting at least one electrical device to a power source. The power cable includes an input terminal, at least one output terminal, a power transmitting wire, a switch, a voltage setting device, a voltage sampling device, a voltage comparing device and a power supply. The power transmitting wire connects the input terminal and the output terminal via the switch. The voltage sampling device is configured for sensing a voltage of the output terminal. The voltage comparing device is configured for comparing a preset voltage stored in the voltage setting device and the sampled voltage sensed by the voltage sampling device to turn on or turn off the switch according to the compared result. The power supply is configured for reducing the voltage of the power source to the rated voltage of the voltage comparing device to power the voltage comparing device.
Abstract:
An ON/OFF detection circuit for detecting an electronic device includes a switch circuit, a current sampling circuit, an amplifying circuit, and a control circuit. The switch circuit includes an input terminal connected to a constant voltage source, an output terminal coupled to the electronic device, and a control terminal. The current sampling circuit is connected between the input terminal and the output terminal of the switch circuit, and is configured for sampling current flowing to the electronic device and converting sampled current into sampled voltage. The amplifying circuit is configured for filtering and amplifying the sampled voltage. The control circuit controls the ON and OFF of the electronic device and compares the sampled voltages with a comparison voltage to judge the electronic device is qualify or disqualify.
Abstract:
A CPU cooling circuit for a CPU includes a thermoelectric element and a current source circuit. The thermoelectric element includes a first thermoelectric substrate attached to the CPU, a second thermoelectric substrate opposite to the first thermoelectric substrate, a plurality of n-type semiconductor units and p-type semiconductor units alternately sandwiched between the first and the second thermoelectric substrates and electrically connected in series between a positive power supply input and a negative power supply input. The current source circuit is configured for providing driving current to flow through the n-type semiconductor units and the p-type semiconductor units of the thermoelectric element according to a temperature of the CPU.
Abstract:
A circuit for alarming abnormal state of a computer fan includes a detection circuit coupled to the computer fan, a controller coupled to the detection circuit and the computer fan, an alarm unit coupled to the controller. The detection circuit detects a power source and a speed control signal received by the computer fan, the controller determines the work state of the computer fan according to the power source, the speed control signal, and a speed signal received from the computer fan and raises an alarm through the alarm unit if the computer fan is not working normally.
Abstract:
A coded entry controlled device can power on a computer. A control circuit receives a power on coded entry via a keyboard and compares the input power on coded entry with an entry pre-stored in a storage circuit. The microcontroller actuates a switch circuit to power on the computer in response to a correct entry.
Abstract:
An electrical parameter detection device is configured for detecting electrical parameters of a peripheral component interconnect (PCI) connector including a plurality of power pins. The electrical parameter detection device includes a processor module, a first detection module, and a second detection module. The processor module continuously detects voltage values of electric potentials provided by each of the power pins of the PCI connector using the first detection module, and determines time sequences of the electric potentials according to the voltage values of the electric potentials. Furthermore, the processor module detects the amount of power provided by each of the power pins of the PCI connector using the second detection module.
Abstract:
An overcurrent protection device includes a power input terminal, a power output terminal, a first signal terminal, a second signal terminal, a testing circuit, and a switch element. The power input terminal and the first signal terminal are connected to a power supply. The power output terminal and the second signal terminal are connected to a computer motherboard. If the first and second terminals are disconnected from each other when the computer motherboard works, the power supply stops working. The testing circuit includes a fixed resistor and a control chip parallel connected between the power input and output terminal. The control chip stores a predetermined voltage threshold, and detects voltage between the two terminals of the fixed resistor, and compares the measured voltage with the predetermined voltage threshold. The switch element disconnects the first and second signal terminals when the measured voltage is greater than the predetermined voltage threshold.
Abstract:
A detection device to detect a power serving time of a super capacitor for a power-disconnected storage card and an amount of the data packets capable of being stored during the detected serving time is provided. The power-disconnected storage card includes a memory. The detection device includes a power supply unit, the super capacitor, a controller, a storage unit, and a detection unit. The storage unit stores the data packets. The detection unit includes a charge notification module, a data notification module and a time module. The charge notification module generates a first notification signal to the time module. The data notification module generates a second notification signal to the time module when the storage unit transmits the data packet to the memory. The time module records time when the memory completely store the data packet according to the first notification signal and the second notification signal.
Abstract:
A temperature detecting apparatus for adjusting direction of airflow from a fan according to thermal status in an electronic device, includes a detection module, a control module, and a driver module. The detection module detects temperatures of a plurality of position coordinates in the electronic device and converts the detected temperatures and the plurality of position coordinates corresponding to the detected temperatures to first voltage signals. The control module receives the first voltage signals and compares the temperatures of corresponding position coordinates to output a position coordinate of the greatest temperature according to the first voltage signals. The driver module receives the position coordinate of the greatest temperature and directs airflow towards a position having the greatest temperature.