Abstract:
Devices, systems and methods for high-utilization low-latency multi-channel time-division multiplexing access (TDMA) are described. One example method for wireless communication includes performing, in a first time interval of a time-division multiple access (TDMA) slot, a transmission of a first data unit over a first logical channel of the plurality of logical channels, refraining from transmitting, subsequent to a completion of the transmission of the first data unit, for a second time interval immediately after the first time interval, and performing (N−1) transmissions in (N−1) time intervals for each data unit of (N−1) subsequent data units in the TDMA slot, such that a transmission of an nth data unit of the (N−1) subsequent data units is performed over an nth logical channel of the plurality of logical channels.
Abstract:
Methods, devices and systems that use a control channel to coordinate quality of data communications in software-defined heterogenous multi-hop ad hoc networks are described. In some embodiments, an example apparatus for wireless communication in a network includes performing, using a control plane, network management functions over a control channel that has a first bandwidth, implements a frequency-hopping operation, and operates at in a first frequency band, and performing, using a data plane that is physically and logically decoupled from the control plane, data forwarding functions, based on a routing decision, over at least one data channel that has a second bandwidth and operates in a second frequency band different from the first frequency band.
Abstract:
Methods, devices and systems that use a control channel to coordinate quality of data communications in software-defined heterogenous multi-hop ad hoc networks are described. In some embodiments, an example apparatus for wireless communication in a network includes performing, using a control plane, network management functions over a control channel that has a first bandwidth, implements a frequency-hopping operation, and operates at in a first frequency band, and performing, using a data plane that is physically and logically decoupled from the control plane, data forwarding functions, based on a routing decision, over at least one data channel that has a second bandwidth and operates in a second frequency band different from the first frequency band.
Abstract:
Devices, systems and methods for providing network-enabled connectivity for disadvantaged communication links in wireless networks are described. One example method for enabling connectivity over a disadvantaged link includes receiving, by a first node of a plurality of nodes from a source node in the first frequency band in a first timeslot, a first signal comprising a message, receiving, by the first node from at least a second node in a second frequency band in a second timeslot, a second signal that is used to generate a first reliability metric corresponding to the message, and performing, based on a plurality of reliability metrics corresponding to the message and the first reliability metric, a processing operation on the message, the first frequency band being non-overlapping with the second frequency band, and a duration of the first timeslot being greater than a duration of the second timeslot.
Abstract:
Methods, devices and systems that use a control channel to coordinate quality of data communications in software-defined heterogenous multi-hop ad hoc networks are described. In some embodiments, an example apparatus for wireless communication in a network includes performing, using a control plane, network management functions over a control channel that has a first bandwidth, implements a frequency-hopping operation, and operates at in a first frequency band, and performing, using a data plane that is physically and logically decoupled from the control plane, data forwarding functions, based on a routing decision, over at least one data channel that has a second bandwidth and operates in a second frequency band different from the first frequency band.
Abstract:
The estimation and mitigation of swept-tone interferers includes receiving a composite signal comprising a signal of interest and a swept-tone interferer over an observation bandwidth. The estimation of the interfering signal may be based on modeling the interferer over the observation bandwidth as a magnitude periodic signal comprising non-overlapping, contiguous epochs, where each epoch may comprise a common pulse shape and a distinct phase rotation. The period of the magnitude-periodic signal may be initially determined, and the common pulse shape and each of the distinct phase rotations may then be estimated. These estimates may be used to reconstruct an estimate of the swept-tone interferer, which may be subtracted from the composite signal to generate an interference-mitigated signal of interest.
Abstract:
A method for interference estimation and mitigation includes receiving a high-resolution digital signal. The high-resolution digital signal comprises a signal of interest and an interfering signal. An estimate of the interfering signal is generated using a quantizer. The signal of interest is in a quantization noise of the quantizer. An interference-mitigated signal of interest is generated based on a difference of the estimate of the interfering signal and the high-resolution digital signal.
Abstract:
An apparatus for joint analog and digital interference cancellation includes a receiver configured to receive an analog reference interfering signal on a reference path, and a sum of an analog interference signal and an analog signal of interest on an antenna path. An analog interference canceller may be configured to produce an analog partially interference-cancelled signal using the analog reference interfering signal and the sum of the analog interference signal and the analog signal of interest. A first analog-to-digital converter may be configured to digitize the analog reference interfering signal to produce a digital reference interfering signal. A second analog-to-digital converter may be configured to digitize the analog partially interference-cancelled signal to produce a digital partially interference-cancelled signal. A digital interference canceller may be configured to produce an interference-cancelled signal using the digital reference interfering signal and the digital partially interference-cancelled signal.
Abstract:
A system and method is presented for establishing relayed communications involving (1) sending a request message from a source node to a destination node through a plurality of intermediate nodes, (2) receiving the request message at the destination node, and (3) sending an acceptance message from the destination node to the source node through at least a subset of the intermediate nodes, wherein an intermediate node relays the request or acceptance message by receiving the message and re-transmitting the message, and wherein the intermediate node is capable of receiving the message from more than one other intermediate node.
Abstract:
Methods and systems for low-complexity channel profiling in frequency-hopped (FH) direct-sequence spread spectrum (DSSS) wireless communication systems are described. An example system includes a receiver configured to receive, over a channel, a FH DSSS signal associated with multiple frequency hops, and a processor configured to perform, using a first subset of the multiple frequency hops, a timing acquisition operation using a full correlative processing operation. The receiver is then configured to perform, subsequent to the timing acquisition operation and using a second subset of the multiple frequency hops, a predominant delay estimation operation, where estimating predominant channel delays excludes using the full correlative processing operation, and finally compute, based on an output of the predominant delay estimation operation, a channel estimate comprising an estimate of each of a number of channel taps that represent the channel, and where each channel tap estimate comprises a gain, a phase, and a delay.