Abstract:
Disclosed herein is a lighting system including a detector, which is configure to obtain an indicator data of a RF signal. The detector compares the indicator data with a baseline indicator data to generate a difference value and determines a rate of change from the indicator data. The detector also determines a data metric based on the rate of change and the difference value and compares the data metric with a transition threshold to detect one of an occupancy condition or a non-occupancy condition in the area. The lighting system also includes a light source, which is controlled in response to the detected one of the occupancy condition or the non-occupancy condition in the area.
Abstract:
A system and method for determining the position of an object in a space includes positioning the object within the overlapping detection fields of a plurality of analog proximity sensors, wherein the proximity sensors produce an output signal having a signal strength related to the proximity of the object to the sensors. The strength of the output signal produced by each analog proximity sensor can be detected and a position for the object established based on the relative signal strengths produced by the proximity sensors. The system and method have particular application with devices for gestural control, for example gestural controlled dimmer switches, where some data manipulation is required to generate high-resolution positional data to activate the device.
Abstract:
A lighting system having neural hubs that connect to other neural hubs in a manner that allows a lighting system to be configured in a two dimensional pattern that can propagate out from a single neural hub. Straight sections can be provided for use in connection with the neural hubs to enhance the configurability of the lighting system.
Abstract:
An electrical interconnect system is comprised of at least one and suitably a plurality of thin body light sources, such as OLED panels, to be electrified. The thin body light source or sources have a thin profile and include a back side provided with surface contact electrodes for energizing the thin body light sources, which can be relatively large area electrodes for providing a relatively large contact surface area. A connector circuit supported by a thin body support structure is provided for making desired electrical connections between thin body light sources or to a voltage or current source when the thin body support structure is brought into engagement with the thin body light sources.
Abstract:
System level occupancy counting in a lighting system configured to obtain an indicator data of a RF spectrum signal (signal) generated at a number of times in an area. At each respective one of the number of times, based on results of application of heuristic algorithm coefficients, the lighting system generates an indicator data metric value for each of the indicator data for the respective time. The lighting system processes each of the indicator data metric value to compute a plurality of metric values for the respective time and combine the plurality of metric values to compute an output metric value for each of a plurality of probable number of occupants in the area for the respective time. The lighting system determines an occupancy count in the area at the respective time based on the computed output metric value.
Abstract:
The lighting device includes a luminaire, duplex circuitry, a lighting control device to control a light output and operation of a light source in a vicinity of the luminaire, and a sound transducer integrated on a surface of an element of the luminaire. The sound transducer responds to vibrations of the luminaire element to detect incoming audio waves and generates outgoing audio waves in the vicinity of the luminaire. The duplex circuitry is coupled to electrical terminals of the sound transducer and configured to generate a first electrical signal of the incoming audio waves, and supply a second electrical signal to cause the sound transducer to generate the outgoing audio waves in the vicinity of the luminaire that are directly proportional to the second electrical signal.
Abstract:
Disclosed herein is a lighting system configured to obtain an indicator data of a RF spectrum signal generated at a number of times in an area. At each respective one of the number of times, apply one of a plurality of heurist algorithm coefficients to each indicator data from a receiver for the respective time, based on results of the applications of the coefficients to indicator data, generate an indicator data metric value for each of the indicator data for the respective time, and process the indicator data metric values to compute an output value. The lighting system is further configured to compare the output value at each of the plurality of times with a threshold, to detect one of an occupancy condition or a non-occupancy condition in the area and control the light source in response to the detected one of the occupancy condition or the non-occupancy condition in the area at each of the number of times.
Abstract:
Disclosed herein is a lighting system configured to obtain an indicator data of a RF signal generated at a number of times in an area. When each such time is a current time, the indicator data generated at the current time is compared with the indicator data generated at a preceding time to determine a rate of change, and the indicator data generated at the current time is compared with a baseline indicator data at an earlier time to generate a difference value. The lighting system is configured to determine an indicator data metric based on the rate of change and the difference value and compare the indicator data metric with one of a rising transition threshold or a falling transition threshold to detect one of an occupancy condition or a non-occupancy condition in the area.
Abstract:
A lighting device or system is configured to control of one or more parameters of light output, such as ON/OFF status, intensity when ON, color characteristics and position or orientation of light output (e.g. via a motorized luminaire control). The device or system may have other output capability, e.g. display projection or audio. Sensors or other input devices are responsive to the user. Responsive to user input, sensed activity, and/or acquired information, the device or system, controls a light source in accordance with a lighting control function. Operation of the light source and the lighting control function may be modified based on learning by the device or system.
Abstract:
A lighting device or system is configured to control of one or more parameters of light output, such as ON/OFF status, intensity when ON, color characteristics and position or orientation of light output (e.g. via a motorized luminaire control). The device or system may have other output capability, e.g. display projection or audio. Sensors or other input devices are responsive to the user. Responsive to user input, sensed activity, and/or acquired information, the device or system, controls a light source in accordance with a lighting control function. Operation of the light source and the lighting control function may be modified based on learning by the device or system.