Performing electronic document segmentation using deep neural networks

    公开(公告)号:US11600091B2

    公开(公告)日:2023-03-07

    申请号:US17327382

    申请日:2021-05-21

    Applicant: Adobe Inc.

    Abstract: Techniques for document segmentation. In an example, a document processing application segments an electronic document image into strips. A first strip overlaps a second strip. The application generates a first mask indicating one or more elements and element types in the first strip by applying a predictive model network to image content in the first strip and a prior mask generated from image content of the first strip. The application generates a second mask indicating one or more elements and element types in the second strip by applying the predictive model network to image content in the second strip and the first mask. The application computes, from a combined mask derived from the first mask and the second mask, an output electronic document that identifies elements in the electronic document and the respective element types.

    IDENTIFYING DIGITAL ATTRIBUTES FROM MULTIPLE ATTRIBUTE GROUPS UTILIZING A DEEP COGNITIVE ATTRIBUTION NEURAL NETWORK

    公开(公告)号:US20220309093A1

    公开(公告)日:2022-09-29

    申请号:US17806922

    申请日:2022-06-14

    Applicant: Adobe Inc.

    Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group). Based on the generated tags, the disclosed systems can respond to tag queries and search queries.

    PERFORMING ELECTRONIC DOCUMENT SEGMENTATION USING DEEP NEURAL NETWORKS

    公开(公告)号:US20210279461A1

    公开(公告)日:2021-09-09

    申请号:US17327382

    申请日:2021-05-21

    Applicant: Adobe Inc.

    Abstract: Techniques for document segmentation. In an example, a document processing application segments an electronic document image into strips. A first strip overlaps a second strip. The application generates a first mask indicating one or more elements and element types in the first strip by applying a predictive model network to image content in the first strip and a prior mask generated from image content of the first strip. The application generates a second mask indicating one or more elements and element types in the second strip by applying the predictive model network to image content in the second strip and the first mask. The application computes, from a combined mask derived from the first mask and the second mask, an output electronic document that identifies elements in the electronic document and the respective element types.

    Electronic document segmentation using deep learning

    公开(公告)号:US11042734B2

    公开(公告)日:2021-06-22

    申请号:US16539634

    申请日:2019-08-13

    Applicant: Adobe Inc.

    Abstract: Techniques for document segmentation. In an example, a document processing application segments an electronic document image into strips. A first strip overlaps a second strip. The application generates a first mask indicating one or more elements and element types in the first strip by applying a predictive model network to image content in the first strip and a prior mask generated from image content of the first strip. The application generates a second mask indicating one or more elements and element types in the second strip by applying the predictive model network to image content in the second strip and the first mask. The application computes, from a combined mask derived from the first mask and the second mask, an output electronic document that identifies elements in the electronic document and the respective element types.

    Digital image search training using aggregated digital images

    公开(公告)号:US10831818B2

    公开(公告)日:2020-11-10

    申请号:US16177243

    申请日:2018-10-31

    Applicant: Adobe Inc.

    Abstract: Digital image search training techniques and machine-learning architectures are described. In one example, a query digital image is received by service provider system, which is then used to select at least one positive sample digital image, e.g., having a same product ID. A plurality of negative sample digital images is also selected by the service provider system based on the query digital image, e.g., having different product IDs. The at least one positive sample digital image and the plurality of negative samples are then aggregated by the service provider system into a single aggregated digital image. At least one neural network is then trained by the service provider system using a loss function based on a feature comparison between the query digital image and samples from the aggregated digital image in a single pass.

    DIGITAL IMAGE REPOSING BASED ON MULTIPLE INPUT VIEWS

    公开(公告)号:US20250005812A1

    公开(公告)日:2025-01-02

    申请号:US18215484

    申请日:2023-06-28

    Applicant: Adobe Inc.

    Abstract: In implementations of systems for human reposing based on multiple input views, a computing device implements a reposing system to receive input data describing: input digital images; pluralities of keypoints corresponding to the input digital images, the pluralities of keypoints representing poses of a person depicted in the input digital images; and a plurality of keypoints representing a target pose. The reposing system generates selection masks corresponding to the input digital images by processing the input data using a machine learning model. The selection masks represent likelihoods of spatial correspondence between pixels of an output digital image and portions of the input digital images. The reposing system generates the output digital image depicting the person in the target pose for display in a user interface based on the selection masks and the input data.

Patent Agency Ranking