-
公开(公告)号:US12190061B2
公开(公告)日:2025-01-07
申请号:US17644856
申请日:2021-12-17
Applicant: ADOBE INC.
Inventor: Shashank Shailabh , Madhur Panwar , Milan Aggarwal , Pinkesh Badjatiya , Simra Shahid , Nikaash Puri , S Sejal Naidu , Sharat Chandra Racha , Balaji Krishnamurthy , Ganesh Karbhari Palwe
IPC: G06F40/289 , G06F40/30 , G06F40/40
Abstract: Systems and methods for topic modeling are described. The systems and methods include encoding words of a document using an embedding matrix to obtain word embeddings for the document. The words of the document comprise a subset of words in a vocabulary, and the embedding matrix is trained as part of a topic attention network based on a plurality of topics. The systems and methods further include encoding a topic-word distribution matrix using the embedding matrix to obtain a topic embedding matrix. The topic-word distribution matrix represents relationships between the plurality of topics and the words of the vocabulary. The systems and methods further include computing a topic context matrix based on the topic embedding matrix and the word embeddings and identifying a topic for the document based on the topic context matrix.
-
公开(公告)号:US20240362941A1
公开(公告)日:2024-10-31
申请号:US18140143
申请日:2023-04-27
Applicant: Adobe Inc.
Inventor: Silky Singh , Surgan Jandial , Shripad Vilasrao Deshmukh , Milan Aggarwal , Mausoom Sarkar , Balaji Krishnamurthy , Arneh Jain , Abhinav Java
IPC: G06V30/262 , G06V30/14 , G06V30/19 , G06V30/414
CPC classification number: G06V30/274 , G06V30/1444 , G06V30/19147 , G06V30/414
Abstract: A corrective noise system receives an electronic version of a fillable form generated by a segmentation network and receives a correction to a segmentation error in the electronic version of the fillable form. The corrective noise system is trained to generate noise that represents the correction and superimpose the noise on the fillable form. The corrective noise system is further trained to identify regions in a corpus of forms that are semantically similar to a region that was subject to the correction. The generated noise is propagated to the semantically similar regions in the corpus of forms and the noisy corpus of forms is provided as input to the segmentation network. The noise causes the segmentation network to accurately identify fillable regions in the corpus of forms and output a segmented version of the corpus of forms having improved fidelity without retraining or otherwise modifying the segmentation network.
-
公开(公告)号:US20240355020A1
公开(公告)日:2024-10-24
申请号:US18304534
申请日:2023-04-21
Applicant: Adobe Inc.
Inventor: Yaman Kumar , Somesh Singh , Seoyoung Park , Pranjal Prasoon , Nithyakala Sainath , Nisarg Shailesh Joshi , Nikitha Srikanth , Nikaash Puri , Milan Aggarwal , Jayakumar Subramanian , Ganesh Palwe , Balaji Krishnamurthy , Matthew William Rozen , Mihir Naware , Hyman Chung
Abstract: In implementations of systems for digital content analysis, a computing device implements an analysis system to extract a first content component and a second content component from digital content to be analyzed based on content metrics. The analysis system generates first embeddings using a first machine learning model and second embedding using a second machine learning model. The first embeddings and the second embeddings are combined as concatenated embeddings. The analysis system generates an indication of a content metric for display in a user interface using a third machine learning model based on the concatenated embeddings.
-
4.
公开(公告)号:US20240330682A1
公开(公告)日:2024-10-03
申请号:US18295094
申请日:2023-04-03
Applicant: Adobe Inc.
Inventor: Surgan JANDIAL , Siddarth Ramesh , Piyush Gupta , Gauri Gupta , Balaji Krishnamurthy
IPC: G06N3/08 , G06N3/0455
CPC classification number: G06N3/08 , G06N3/0455
Abstract: Systems and methods for generating synthetic tabular data for machine learning and other applications are provided. In some embodiments, a variational autoencoder is trained to learn inter-feature correlations found in tabular data collected from real data sources. The trained variational autoencoder is used to train a generator model of a Generative Adversarial Network (GAN) to generate synthetic tabular data that exhibits the inter-feature correlation distribution found in the tabular data collected from real data sources. In some embodiments, processing devices perform operations comprising: receiving a set of tabular data records, each record comprising a plurality of features; training a first machine learning model using the tabular data records to learn correlations between the plurality of features; and training a second machine learning model, using the first machine learning model, to generate a synthetic tabular data records based at least on the one or more correlations between the plurality of features.
-
公开(公告)号:US20240330351A1
公开(公告)日:2024-10-03
申请号:US18190686
申请日:2023-03-27
Applicant: Adobe Inc.
Inventor: Abhinav Java , Surgan Jandial , Shripad Vilasrao Deshmukh , Milan Aggarwal , Mausoom Sarkar , Balaji Krishnamurthy , Arneh Jain
IPC: G06F16/383 , G06F16/332 , G06V30/19 , G06V30/412
CPC classification number: G06F16/383 , G06F16/332 , G06V30/19147 , G06V30/412
Abstract: Form structure similarity detection techniques are described. A content processing system, for instance, receives a query snippet that depicts a query form structure. The content processing system generates a query layout string that includes semantic indicators to represent the query form structure and generates candidate layout strings that represent form structures from a target document. The content processing system calculates similarity scores between the query layout string and the candidate layout strings. Based on the similarity scores, the content processing system generates a target snippet for display that depicts a form structure that is structurally similar to the query form structure. The content processing system is further operable to generate a training dataset that includes image pairs of snippets depicting form structures that are structurally similar. The content processing system utilizes the training dataset to train a machine learning model to perform form structure similarity matching.
-
公开(公告)号:US11972466B2
公开(公告)日:2024-04-30
申请号:US16417373
申请日:2019-05-20
Applicant: ADOBE INC.
Inventor: Jonas Dahl , Mausoom Sarkar , Hiresh Gupta , Balaji Krishnamurthy , Ayush Chopra , Abhishek Sinha
IPC: G06Q30/0601 , G06F16/583
CPC classification number: G06Q30/0625 , G06F16/5854
Abstract: A search system provides search results with images of products based on associations of primary products and secondary products from product image sets. The search system analyzes a product image set containing multiple images to determine a primary product and secondary products. Information associating the primary and secondary products are stored in a search index. When the search system receives a query image containing a search product, the search index is queried using the search product to identify search result images based on associations of products in the search index, and the result images are provided as a response to the query image.
-
公开(公告)号:US11907508B1
公开(公告)日:2024-02-20
申请号:US18133725
申请日:2023-04-12
Applicant: Adobe Inc.
Inventor: Yaman Kumar , Somesh Singh , William Brandon George , Timothy Chia-chi Liu , Suman Basetty , Pranjal Prasoon , Nikaash Puri , Mihir Naware , Mihai Corlan , Joshua Marshall Butikofer , Abhinav Chauhan , Kumar Mrityunjay Singh , James Patrick O'Reilly , Hyman Chung , Lauren Dest , Clinton Hansen Goudie-Nice , Brandon John Pack , Balaji Krishnamurthy , Kunal Kumar Jain , Alexander Klimetschek , Matthew William Rozen
IPC: G06F3/0484 , G06F18/2415 , G06V10/40 , G06V10/764 , G06F3/0482 , G06T11/20 , G06F40/166 , G06F40/151
CPC classification number: G06F3/0484 , G06F3/0482 , G06F18/2415 , G06F40/151 , G06F40/166 , G06T11/206 , G06V10/40 , G06V10/764 , G06T2200/24
Abstract: Content creation techniques are described that leverage content analytics to provide insight and guidance as part of content creation. To do so, content features are extracted by a content analytics system from a plurality of content and used by the content analytics system as a basis to generate a content dataset. Event data is also collected by the content analytics system from an event data source. Event data describes user interaction with respective items of content, including subsequent activities in both online and physical environments. The event data is then used to generate an event dataset. An analytics user interface is then generated by the content analytics system using the content dataset and the event dataset and is usable to guide subsequent content creation and editing.
-
公开(公告)号:US11816696B2
公开(公告)日:2023-11-14
申请号:US17355907
申请日:2021-06-23
Applicant: Adobe Inc.
Inventor: Pankhri Singhai , Sundeep Parsa , Piyush Gupta , Nupur Kumari , Nikaash Puri , Mayank Singh , Eshita Shah , Balaji Krishnamurthy , Akash Rupela
IPC: G06Q30/00 , G06Q30/0242 , G06Q30/0251 , G06N20/00 , G06N5/00 , G05B19/418
CPC classification number: G06Q30/0244 , G06N5/00 , G06N20/00 , G06Q30/0242 , G06Q30/0254 , G06Q30/0255 , G06Q30/0264
Abstract: Machine-learning based multi-step engagement strategy modification is described. Rather than rely heavily on human involvement to manage content delivery over the course of a campaign, the described learning-based engagement system modifies a multi-step engagement strategy, originally created by an engagement-system user, by leveraging machine-learning models. In particular, these leveraged machine-learning models are trained using data describing user interactions with delivered content as those interactions occur over the course of the campaign. Initially, the learning-based engagement system obtains a multi-step engagement strategy created by an engagement-system user. As the multi-step engagement strategy is deployed, the learning-based engagement system randomly adjusts aspects of the sequence of deliveries for some users. Based on data describing the interactions of recipients with deliveries served according to both the user-created and random multi-step engagement strategies, the machine-learning models generate a modified multi-step engagement strategy.
-
公开(公告)号:US11468314B1
公开(公告)日:2022-10-11
申请号:US16129553
申请日:2018-09-12
Applicant: ADOBE INC.
Inventor: Mayank Singh , Abhishek Sinha , Balaji Krishnamurthy
Abstract: Embodiments disclosed herein describe systems, methods, and products that generate trained neural networks that are robust against adversarial attacks. During a training phase, an illustrative computer may iteratively optimize a loss function that may include a penalty for ill-conditioned weight matrices in addition to a penalty for classification errors. Therefore, after the training phase, the trained neural network may include one or more well-conditioned weight matrices. The one or more well-conditioned weight matrices may minimize the effect of perturbations within an adversarial input thereby increasing the accuracy of classification of the adversarial input. By contrast, conventional training approaches may merely reduce the classification errors using backpropagation, and, as a result, any perturbation in an input is prone to generate a large effect on the output.
-
公开(公告)号:US20220309093A1
公开(公告)日:2022-09-29
申请号:US17806922
申请日:2022-06-14
Applicant: Adobe Inc.
Inventor: Ayush Chopra , Mausoom Sarkar , Jonas Dahl , Hiresh Gupta , Balaji Krishnamurthy , Abhishek Sinha
IPC: G06F16/535 , G06K9/62 , G06F17/15 , G06N3/04 , G06F16/55
Abstract: The present disclosure relates to systems, methods, and non-transitory computer-readable media for generating tags for an object portrayed in a digital image based on predicted attributes of the object. For example, the disclosed systems can utilize interleaved neural network layers of alternating inception layers and dilated convolution layers to generate a localization feature vector. Based on the localization feature vector, the disclosed systems can generate attribute localization feature embeddings, for example, using some pooling layer such as a global average pooling layer. The disclosed systems can then apply the attribute localization feature embeddings to corresponding attribute group classifiers to generate tags based on predicted attributes. In particular, attribute group classifiers can predict attributes as associated with a query image (e.g., based on a scoring comparison with other potential attributes of an attribute group). Based on the generated tags, the disclosed systems can respond to tag queries and search queries.
-
-
-
-
-
-
-
-
-