Abstract:
The present disclosure provides a method of manufacturing a sound absorbing panel in which a reflective wall on one of faces of a set of sound absorbing cells. In particular, a passage on a portion of a thickness (E) of the set of sound absorbing cells is formed on an opposite face of the one of the faces, while the passage forming a main channel for a communication between sound absorbing cells and for a circulation of a de-icing fluid.
Abstract:
The present disclosure provides a method of manufacturing a sound absorbing panel in which a reflective wall on one of faces of a set of sound absorbing cells. In particular, a passage on a portion of a thickness (E) of the set of sound absorbing cells is formed on an opposite face of the one of the faces, while the passage forming a main channel for a communication between sound absorbing cells and for a circulation of a de-icing fluid.
Abstract:
A nacelle of a turbine engine includes an external cowling, an internal cowling, and a heat exchanger associated with at least one circulation duct for a fluid. In particular, the circulation duct forms a recirculation loop through the heat exchanger, and the recirculation loop includes at least one circulation area extending at least partially along the external cowling in contact with a wall of the external cowling so as to allow exchange of heat by conduction with the air outside the nacelle.
Abstract:
The present disclosure provides a device for de-icing an air inlet lip of an aircraft nacelle. The device includes a pre-exchanger, an intake orifice of taking in low-pressure air downstream from a fan, and two high-pressure air intake orifices downstream from a compressor in addition to controlled valves and check valves installed in an air flow network. In particular, the pre-exchanger includes a low-pressure air outlet capable of opening into the air inlet lip of the aircraft nacelle via a pipe of the air flow network.
Abstract:
A nacelle for an aircraft turbojet engine includes: a substantially cylindrical internal envelope, a substantially cylindrical external envelope, a downstream partition wall and an upstream partition wall secured to the cylindrical internal envelope and a front lip disposed forward of the upstream partition wall. The cylindrical internal envelope includes an upstream portion including an acoustic shroud connected, by an attachment flange, to a downstream portion including a fan casing. In particular, the front lip is extended and disposed over the upstream partition wall by presenting a downstream edge between the upstream and downstream partition walls in order to be secured to a homologous edge of the cylindrical external envelope so as to arrange a maintenance access to the attachment flange.
Abstract:
The present disclosure relates to a propulsion unit for an aircraft including a nacelle which surrounds a turbojet engine. The nacelle has an inner structure surrounding a downstream compartment of the turbojet engine, and the inner structure includes two annular half-portions. The propulsion unit also includes a rail/guide unit and to move the annular half-portions between a working position and a maintenance position. In particular, the rail/guide unit radially moves away the annular half-portions relative to a longitudinal axis of the nacelle, during a translation movement of the annular half-portions. The nacelle is provided with a connecting rod which is connected to the annular half-portions and to the turbojet engine and so that the connecting rod contributes to rotate the annular half-portions about the rail.
Abstract:
The present disclosure provides a cooling device for a turbo engine of an aircraft nacelle, including: a heat exchanger and an air outlet pipe. The nacelle includes a front housing that has a front lip forming a hollow leading edge that delimits an annular de-icing chamber. In particular, the cooling device further includes a pipe for supplying pressurized air that extends from an inlet end linked to a pressurized air source, to an outlet end forming an air ejection nozzle opening into the de-icing chamber, and the outlet pipe of the heat exchanger has an air outlet section that is arranged in the de-icing chamber in a position designed such that the pressurized air ejection nozzle forms an air suction pump in the outlet pipe of the exchanger.
Abstract:
The present disclosure relates to a nacelle for a dual-flow turbojet engine includes a cold airstream having a non-constant cross-section over the periphery of the nacelle, such that at least one flap is radially offset with respect to the central axis of the turbojet engine, relative to the adjacent flaps. The system for driving the radially offset flaps is suitable for ensuring that the kinematics of the flaps are offset relative to the kinematics of the flaps mounted along the remainder of the periphery of the airstream.