Abstract:
A touch controller with improved diagnostics calibration and communication support includes a data capture register configured to sample data from one or a plurality of touch panel sense channels at an output of an analog to digital (A/D) converter. The sampled data is bit packed, and a demodulation waveform is captured, correlated with the sampled data. The contents of the data capture register, including the sampled data and the demodulation waveform, are transferred to a memory configured to create one or more records from the transferred contents. A processor can be used to extract the one or more records captured in the memory to display to a user for diagnostics or calibration.
Abstract:
A controller with mismatch compensation for a touch panel is disclosed. A multi-stimulus controller for a touch panel can be formed on a single integrated circuit (single-chip) that can include a transmit section that can generate a plurality of drive signals, a plurality of transmit channels that can transmit the drive signals simultaneously to drive the touch panel, a receive channel that can receive a sense signal resulting from the driving of the touch panel, and a demodulation section that can demodulate the received sense signal to obtain sensing results, the demodulation section including a demodulator and a vector operator. The transmit section can include a pair of adjustable gain buffers that can adjust the gain of stimulation signals to account for the signal path length mismatch of various transmit signal paths.
Abstract:
A sensor panel device that can generate and use a stimulus signal having multiple different waveforms for detecting events on or near the sensor panel is disclosed. Among other things, such a stimulus signal can be used to reject environmental noise present in the device. In some embodiments, the stimulus signal has multiple waveforms having different frequencies. Logic circuitry can generate representative values from output of the different waveforms applied to one or more sensing nodes in the sensor panel device. From the representative values, a final value can be generated that represents whether an event occurred at or near the one or more sensing nodes.
Abstract:
Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
Abstract:
A touch input device configured to mitigate the effects of dynamic cross talk noise is provided. The touch input device can dither an effective resistance of a plurality of gate lines proximal to the touch sensor panel in order to determine if a phase of a touch signal demodulator needs to be adjusted.
Abstract:
A touch input device configured to mitigate the effects of dynamic cross talk noise is provided. The touch input device can dither an effective resistance of a plurality of gate lines proximal to the touch sensor panel in order to determine if a phase of a touch signal demodulator needs to be adjusted.
Abstract:
A sensor panel device that can generate and use a stimulus signal having multiple different waveforms for detecting events on or near the sensor panel is disclosed. Among other things, such a stimulus signal can be used to reject environmental noise present in the device. In some embodiments, the stimulus signal has multiple waveforms having different frequencies. Logic circuitry can generate representative values from output of the different waveforms applied to one or more sensing nodes in the sensor panel device. From the representative values, a final value can be generated that represents whether an event occurred at or near the one or more sensing nodes.
Abstract:
A touch input device configured to mitigate the effects of dynamic cross talk noise is provided. The touch input device can dither an effective resistance of a plurality of gate lines proximal to the touch sensor panel in order to determine if a phase of a touch signal demodulator needs to be adjusted.
Abstract:
The use of multiple stimulation frequencies and phases to generate an image of touch on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a column in a touch sensor panel and can have multiple mixers. Each mixer in the sense channel can utilize a circuit capable generating a demodulation frequency of a particular frequency. At each of multiple steps, various phases of selected frequencies can be used to simultaneously stimulate the rows of the touch sensor panel, and the multiple mixers in each sense channel can be configured to demodulate the signal received from the column connected to each sense channel using the selected frequencies. After all steps have been completed, the demodulated signals from the multiple mixers can be used in calculations to determine an image of touch for the touch sensor panel at each frequency.