Abstract:
This application sets forth a circuit configuration for a light emitting diode (LED) or organic light emitting diode (OLED) display. The circuit configuration allows for the pulse-width modulation (PWM) of each emission signal sent to each line of the display. The PWM of each emission signal is accomplished using a gate-in-panel (GIP) controller of the display. The GIP controller uses an arrangement of shift register outputs and a programmable clock input to control an output of an inverter that provides the emission signal. The programmable clock input can be programmed according to a desired timing or duty cycle for the emission signal. In this way, by limiting the duty cycle of the emission signal, dimming and other display features can be exhibited by the LED or OLED display.
Abstract:
A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
Abstract:
Electronic devices and methods for compensating for aging or other effects in a display during a non-transmitting state (off state) of the display. Sensing may include emissive element sensing of the display and/or thin film transistor sensing of the display. Compensating for the effects may preserve or increase a uniformity of transmission of the display.
Abstract:
A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
Abstract:
An apparatus receives current image frame data and data relating to at least one previous image frame for an electronic display. One or more parameters related to hysteresis of transistors in the electronic display are sensed. A correlation device, such as a look-up table, receives the sensed parameter or parameters and the data relating to one or more image frames, and uses this information, at least in part, to output an appropriate compensation signal for the current image frame data. The compensated current image frame data may then be supplied to the electronic display to reduce or eliminate the effects of hysteresis on the displayed image.
Abstract:
A system may include an electronic display panel having pixels, where each pixel may emit light based on a respective programming signal. The system may include a memory storing a map. The processing circuitry may determine a function for each pixel from the map. The processing circuitry may determine a respective control signal based on the function and a target brightness level for each pixel to generate multiple control signals, where the respective control signal is used to generate the respective programing signal for each pixel. The processing circuitry may determine a scaling factor based at least in part on the first map and may scale at least a subset of the multiple control signals based at least in part on the scaling factor.
Abstract:
A display may have an array of pixels each of which has a light-emitting diode such as an organic light-emitting diode. A drive transistor and an emission transistor may be coupled in series with the light-emitting diode of each pixel between a positive power supply and a ground power supply. The pixels may include first and second switching transistors. A data storage capacitor may be coupled between a gate and source of the drive transistor in each pixel. Signal lines may be provided in columns of pixels to route signals such as data signals, sensed drive currents from the drive transistors, and predetermined voltages between display driver circuitry and the pixels. The switching transistors, emission transistors, and drive transistors may include semiconducting-oxide transistors and silicon transistors and may be n-channel transistors or p-channel transistors.
Abstract:
Embodiments described herein generally take the form of an electronic device including a primary and secondary display; at least the secondary display is force-sensitive and further has its force-sensing circuitry in-plane with the display. The secondary display and force-sensing circuitry may be encapsulated between two glass layers that are bonded to one another by a frit. In some embodiments the force-sensing circuitry is formed from, or constitutes part of, the frit.
Abstract:
Systems and methods are provided for differential sensing (DS), difference-differential sensing (DDS), correlated double sampling (CDS), and/or programmable capacitor matching to reduce display panel sensing noise. An electronic device may include one or more processors and an electronic display. The one or more processors may generate image data and adjust the image data based at least in part on display sensing feedback. The electronic display may employ sensing circuitry that obtains the display sensing feedback at least in part by applying test data to a pixel of a column of an active area of the display and differentially senses an electrical value of the pixel in comparison to a reference signal from a different column. This reference signal may provide a common mode noise reference, which is removed by the differential sensing and thereby enhances a quality of the sensed electrical value of the pixel.
Abstract:
The present disclosure relates generally to systems and methods that may reduce a reduction in visual artifacts related to hysteresis of a light emitting diode (LED) electronic display. In one example, an electronic device may include a controller. The controller is may provide a signal to a pixel of a display of the electronic device while at least a portion of the display is turned off. The signal may include a first current and a second current. The first current may be designed to increase an ambient temperature corresponding to the pixel. The second current may be generated as part of an active panel conditioning operation. By applying the first current and the second current, hysteresis settling times from the pixel may improve, therefore improving speeds of sensing and compensation operations of the electronic device.