Abstract:
A method includes providing a target material that includes a component that emits extreme ultraviolet (EUV) light when converted to plasma; directing a first beam of radiation toward the target material to deliver energy to the target material to modify a geometric distribution of the target material to form a modified target; directing a second beam of radiation toward the modified target, the second beam of radiation converting at least part of the modified target to plasma that emits EUV light; controlling a radiant exposure delivered to the target material from the first beam of radiation to within a predetermined range of radiant exposures; and stabilizing a power of the EUV light emitted from the plasma by controlling the radiant exposure delivered to the target material from the first beam of radiation to within the predetermined range of radiant exposures.
Abstract:
Methods and systems for improved timing of a source laser in a laser produced plasma (LPP) extreme ultraviolet (EUV) generation system are disclosed. Due to forces within the plasma chamber, a velocity of a droplet can slow as it approaches the irradiation site. Because the droplet is slowed, a source laser fires prematurely relative to the slowed droplet, resulting in only a leading portion of the droplet being irradiated. The resulting amount of EUV energy generated from the droplet is proportional to the slowed velocity of the droplet. To compensate, the firing of the source laser is delayed for a next droplet based on the generated EUV energy. Because the firing of the source laser is delayed for the next droplet, the next droplet is more likely to be in position to be more completely irradiated, resulting in more EUV energy being generated from the next droplet.