Abstract:
A communication system, method, and components are described. Specifically, a communication system having one or more Back-to-Back User Agents (B2BUAs) therein is described. The communication system also includes an RFC 4579 conference focus. Mechanisms are described which enable User Agents (UAs) to subscribe to conference state events and create ad-hoc conferences even though the conference focus is operating in a B2BUA environment.
Abstract:
To handle a failover condition, a media server receives a request, from a first application server, to stream a first media message in a media channel of a communication session. The first media message is streamed in the media channel of the communication session by the media server. Once the first media message has ended, a status message can be sent to the first application server to determine if the first application server has failed. If a response to the status message is not received (i.e., because the first application server has failed), the media server can stream a second media message during a period where a second application server is failing over for the first application server. If a response to the status message is received, the second media message is not streamed.
Abstract:
Embodiments disclosed provide access to Traversal Using Relays around Network Address Translation (TURN) servers using trusted single-use credentials, and related methods, systems, and computer-readable media. In one embodiment, a method comprises receiving, by a TURN authentication agent, a request for a TURN server credential. Responsive to determining that the request is authorized, the agent generates a trusted single-use credential and transmits it to the requestor. Using this trusted single-use credential allows untrusted clients to access a TURN server without exposing a userid/password combination. In another embodiment, a method comprises receiving, by the TURN server, a request for a TURN service. The server challenges the request, and receives a userid and a password. Responsive to determining that the userid and the password constitute a trusted single-use credential and responsive to determining that the request is authorized, the server provides the TURN service for the requestor.
Abstract:
Embodiments disclosed provide access to Traversal Using Relays around Network Address Translation (TURN) servers using trusted single-use credentials, and related methods, systems, and computer-readable media. In one embodiment, a method comprises receiving, by a TURN authentication agent, a request for a TURN server credential. Responsive to determining that the request is authorized, the agent generates a trusted single-use credential and transmits it to the requestor. Using this trusted single-use credential allows untrusted clients to access a TURN server without exposing a userid/password combination. In another embodiment, a method comprises receiving, by the TURN server, a request for a TURN service. The server challenges the request, and receives a userid and a password. Responsive to determining that the userid and the password constitute a trusted single-use credential and responsive to determining that the request is authorized, the server provides the TURN service for the requestor.
Abstract:
Application of enterprise policies to Web Real-Time Communications (WebRTC) interactive sessions using an enterprise Session Initiation Protocol (SIP) engine, and related methods, systems, and computer-readable media are disclosed. In one embodiment, a method comprises receiving, by session token converter of enterprise device, an incoming WebRTC session description token. The method comprises generating, by session token converter, outgoing SIP request message. The method comprises sending, by session token converter, outgoing SIP request message to enterprise SIP engine and applying, by enterprise SIP engine, enterprise policies based on outgoing SIP request message. The method comprises, responsive to applying enterprise policies, sending incoming SIP request message to enterprise device. The method comprises converting, by session token converter, incoming SIP request message into outgoing WebRTC session description token, and sending outgoing WebRTC session description token to a target device.
Abstract:
A solution is provided that integrates external services with existing PBX services to provide new features to the PBX without having to update the PBX. To provide the external services, an external application server establishes a Computer Telephone Integration (CTI) channel with the PBX in order to register for one or more events that occur for a communication session controlled by the PBX. When one of the events occurs, the PBX sends a token containing information regarding the communication session and a media server associated with the communication session. The external application server uses the information in the token to provide an external service, via an external application, to a media stream of the communication session. In one embodiment, the media stream may be sent to that external application that provides the service to the communication session.
Abstract:
Enhancing media characteristics during Web Real-Time Communications (WebRTC) interactive sessions by using Session Initiation Protocol (SIP) endpoints, and related methods, systems, and computer-readable media are disclosed herein. In one embodiment, a method comprises intercepting, by a media redirection agent of a WebRTC client executing on a computing device, a WebRTC initiation token. The method further comprises generating a SIP endpoint WebRTC token based on the WebRTC initiation token, and sending the SIP endpoint WebRTC token to a remote endpoint. The method also comprises establishing a WebRTC interactive session between the remote endpoint and a SIP endpoint based on the SIP endpoint WebRTC token. By leveraging the audio and/or video functionality of the SIP endpoint, the media characteristics of the WebRTC interactive session may be enhanced, resulting in an enhanced user experience.
Abstract:
As “call centers” continue to be replaced with omnichannel contact centers, managing a plurality of simultaneous media channels becomes more important. Contacting a customer on one channel and, at the customer or agent's request, initiating a second channel that delays the interaction will having limited acceptance and, in some jurisdictions, may be illegal. By nailing-up an agent half-communication with a number of channels, agents maintain a perpetual connection comprising an agent half-communication to a server, such as one serving as a media anchor point, share point, etc. The customer half-connection is established to a server and the agent, already connected, is joined. As a result, the customer experiences a greatly reduced delay between the time they answer and being greeted by an agent, regardless of the media type or types utilized.
Abstract:
As “call centers” continue to be replaced with omnichannel contact centers, managing a plurality of simultaneous media channels becomes more important. Contacting a customer on one channel and, at the customer or agent's request, initiating a second channel that delays the interaction will having limited acceptance and, in some jurisdictions, may be illegal. By nailing-up an agent half-communication with a number of channels, agents maintain a perpetual connection comprising an agent half-communication to a server, such as one serving as a media anchor point, share point, etc. The customer half-connection is established to a server and the agent, already connected, is joined. As a result, the customer experiences a greatly reduced delay between the time they answer and being greeted by an agent, regardless of the media type or types utilized.
Abstract:
As “call centers” continue to be replaced with omnichannel contact centers, managing a plurality of simultaneous media channels becomes more important. Contacting a customer on one channel and, at the customer or agent's request, initiating a second channel that delays the interaction will having limited acceptance and, in some jurisdictions, may be illegal. By nailing-up an agent half-communication with a number of channels, agents maintain a perpetual connection comprising an agent half-communication to a server, such as one serving as a media anchor point, share point, etc. The customer half-connection is established to a server and the agent, already connected, is joined. As a result, the customer experiences a greatly reduced delay between the time they answer and being greeted by an agent, regardless of the media type or types utilized.