摘要:
Methods for controlling a gas turbine engine are provided, where a compressor inlet temperature, ambient temperature, and relative humidity are measured. Utilizing these measurements, it is first determined whether an evaporation cooler is actively importing water content into inlet air entering the compressor. This determination is based on whether the inlet air is substantially cooler than the ambient temperature. If so, an EC correction factor is added to an inlet air temperature value (CTIM) and set as an air temperature parameter (INLETIM). Second, it is determined whether the relative humidity is greater than a predefined threshold. If so, a relative humidity (RH) correction factor is added to CTIM and set as the INLETIM. Next, the INLETIM and TTRF are located in a look-up table, and a bias value corresponding to these inputs is identified. The fuel-flow for a fuel circuit is adjusted according to the identified bias value.
摘要:
A system and method for tuning a gas turbine combustion system having a plurality of seals positioned between the combustion system and the turbine inlet is disclosed. The system and method provide ways of permitting a predetermined amount of compressed air to bypass the combustion system and enter the turbine so as to control emissions and dynamics of the combustion system. The seals contain a plurality of holes to meter airflow passing therethrough and are positioned such that they can be removed from the engine and modified to increase or decrease the amount of air passing therethrough.
摘要:
A gas turbine combustor having improved flashback margin is disclosed. Multiple embodiments of the present invention are disclosed including combustors having a single premix chamber as well as multiple premix chambers. Flashback margin is increased for the combustor by incorporating a means for introducing an inert gas, such as nitrogen, into the premix chamber(s) at the region proximate the boundary layer to purge the boundary layer of combustible mixture, thereby ensuring that no combustion reaction occurs in the boundary layer.
摘要:
A fuel supply system and method thereof that utilizes an off-gas in addition to the primary fuel to lower the emissions of a gas turbine combustion system is disclosed. The fuel supply system apparatus comprises a fuel gas supply conduit and an off-gas supply conduit in fluid communication with the fuel gas supply conduit such that the flow of an off-gas to the fuel gas supply conduit can be regulated as required by the operator to the desired fuel nozzle(s). The fuel gas supply preferably operates with natural gas and the off-gas supply preferably comprises the constituents hydrogen and methane.
摘要:
An ignition system having improved reliability for a gas turbine combustor is disclosed. The ignition system comprises an outer housing having at least one fuel passage and an electrode extending therethrough forming a generally annular passage for cooling air to pass to a mixing chamber. Fuel and air mix in the mixing chamber to form a combustible mixture that is ignited by the electrode. The outer housing further comprises a plurality of air swirl holes to effectively cool the walls of the mixing chamber as well as to provide improved flame stability.
摘要:
A dual fuel premix nozzle and method of operation for use in a gas turbine combustor is disclosed. The dual fuel premix nozzle utilizes a fin assembly comprising a plurality of radially extending fins for injection of gas fuel and compressed air in order to provide a more uniform injection pattern and homogeneous mixture. The premix fuel nozzle includes a plurality of coaxial passages, which provide gaseous fuel and compressed air to the fin assembly. When in liquid fuel operation, the gas circuits are purged with compressed air and liquid fuel and water pass through coaxial passages to the tip of the dual fuel premix fuel nozzle, where they inject liquid fuel and water into the secondary combustion chamber. An alternate embodiment includes an additional gas fuel injection region located along a conically tapered portion of the premixed fuel nozzle, downstream of the fin assembly. A second alternate embodiment is disclosed which reconfigures the injector assembly and fuel injection locations to minimize flow blockage issues at the injector assembly and simplify fuel nozzle manufacturing.
摘要:
The present invention is directed to a combustor/turbine successive dual cooling arrangement in which the combustor has a one-piece hot combustor wall and front and rear cold combustor walls, and cooling air is forced under pressure through perforations in the cold combustor walls and impinges on the annular front and rear sections of the hot combustor wall for the backside cooling of the hot combustor wall. The exhaust combustor backside cooling air is directed to gain access to the hot end of the engine, that is, the turbine section, to cool the turbine components. The combustor/turbine successive dual cooling arrangement according to the present invention enables all the air typically used to cool the hot end of the engine downstream of the combustor, to be used as combustor backside cooling as well, to significantly reduce the amount of air needed for combustor and turbine cooling. Moreover, all the exhaust combustor backside cooling air must be used for turbine cooling and is never ingested into the combustion chamber, thereby avoiding negatively affecting the engine combustion emissions.
摘要:
A premixer for an industrial type gas turbine engine wherein the premixer includes a diffuser ring assembly made up of annular concentric rings and upstream of the diffuser ring assembly in the airflow path is a corresponding fuel manifold ring assembly, each ring in the manifold ring assembly corresponding to a passageway formed between the diffuser rings, and each manifold ring includes a downstream channel for feeding the fuel to the air as the air passes by the ring.
摘要:
A tuning process is provided for monitoring fuel properties of a fuel being consumed by a gas turbine (GT) engine, and for dynamically tuning the GT engine as a function of changes to the monitored fuel properties. Initially, readings are taken from the GT engine during a reference calibration, or commissioning, and utilized to calculate an initial-pressure-drop reference value. The tuning process during commercial operation takes post-calibration readings from the GT engine to calculate a fuel property parameter, which represents a heating value of the fuel. Specifically, the fuel property parameter is calculated by deriving a corrected-pressure-drop dynamic value as a function of pressure and temperature readings of the fuel at a point upstream of a combustor and pressure drops across fuel nozzles that introduce the fuel into the combustor, and solving a ratio of the dynamic value and the reference value.
摘要:
Embodiments for minimizing relative thermal growth within a fuel nozzle of a gas turbine combustor are disclosed. Fuel nozzle configurations are provided in which a heating fluid is provided to one or more passages in a fuel nozzle from feed holes in the fuel nozzle base. The heating fluid passes through the fuel nozzle, thereby raising the operating temperature of portions of the fuel nozzle to reduce differences in thermal gradients within the fuel nozzle. Various fuel nozzle configurations and passageway geometries are also disclosed.