摘要:
Described is using a combination of which a multi-view display is provided by a combining spatial multiplexing (e.g., using a parallax barrier or lenslet), and temporal multiplexing (e.g., using a directed backlight). A scheduling algorithm generates different views by determining which light sources are illuminated at a particular time. Via the temporal multiplexing, different views may be in the same spatial viewing angle (spatial zone). Two of the views may correspond to two eyes of a person, with different video data sent to each eye to provide an autostereoscopic display for that person. Eye (head) tracking may be used to move the view or views with a person as that person moves.
摘要:
The claimed subject matter provides a system and/or a method for simulating grasping of a virtual object. Virtual 3D objects receive simulated user input forces via a 2D input surface adjacent to them. An exemplary method comprises receiving a user input corresponding to a grasping gesture that includes at least two simulated contacts with the virtual object. The grasping gesture is modeled as a simulation of frictional forces on the virtual object. A simulated physical effect on the virtual object by the frictional forces is determined. At least one microprocessor is used to display a visual image of the virtual object moving according to the simulated physical effect.
摘要:
The subject application relates to a system(s) and/or methodology that facilitate vision-based projection of any image (still or moving) onto any surface. In particular, a front-projected computer vision-based interactive surface system is provided which uses a new commercially available projection technology to obtain a compact, self-contained form factor. The subject configuration addresses installation, calibration, and portability issues that are primary concerns in most vision-based table systems. The subject application also relates to determining whether an object is touching or hovering over an interactive surface based on an analysis of a shadow image.
摘要:
Multi-touch user interface interaction is described. In an embodiment, an object in a user interface (UI) is manipulated by a cursor and a representation of a plurality of digits of a user. At least one parameter, which comprises the cursor location in the UI, is used to determine that multi-touch input is to be provided to the object. Responsive to this, the relative movement of the digits is analyzed and the object manipulated accordingly. In another embodiment, an object in a UI is manipulated by a representation of a plurality of digits of a user. Movement of each digit by the user moves the corresponding representation in the UI, and the movement velocity of the representation is a non-linear function of the digit's velocity. After determining that multi-touch input is to be provided to the object, the relative movement of the representations is analyzed and the object manipulated accordingly.
摘要:
Virtual controllers for visual displays are described. In one implementation, a camera captures an image of hands against a background. The image is segmented into hand areas and background areas. Various hand and finger gestures isolate parts of the background into independent areas, which are then assigned control parameters for manipulating the visual display. Multiple control parameters can be associated with attributes of multiple independent areas formed by two hands, for advanced control including simultaneous functions of clicking, selecting, executing, horizontal movement, vertical movement, scrolling, dragging, rotational movement, zooming, maximizing, minimizing, executing file functions, and executing menu choices.
摘要:
The claimed subject matter relates to a display that is physically separable and to an associated architecture that can facilitate data mobility or collaboration in connection with the separable display. In particular, the separable display can be configured as an apparent unitary or singular UI for an associated multi-node computer, yet for which portion of the separable display can be physically decoupled. The multi-node computer can include a set of computing nodes, each of which can potentially operate autonomously, yet also in unison with other nodes to form a collective multiprocessor computing platform. Moreover, each of the computing nodes can be embedded in and distributed throughout the separable display. Accordingly, when a portion of the separable display is decoupled from a remainder of the separable display, both the portion and the remainder can include some subset of the computing nodes, and can therefore maintain the UI.
摘要:
A 3-D imaging system for recognition and interpretation of gestures to control a computer. The system includes a 3-D imaging system that performs gesture recognition and interpretation based on a previous mapping of a plurality of hand poses and orientations to user commands for a given user. When the user is identified to the system, the imaging system images gestures presented by the user, performs a lookup for the user command associated with the captured image(s), and executes the user command(s) to effect control of the computer, programs, and connected devices.
摘要:
A system to position an element on a visual display is provided. The disclosed system comprises a touch detection module that detects a touch upon a touch-sensitive surface of a visual display. Also included is a position module that receives input from the touch detection module to derive a position of a touch. Further, an offset module derives an offset for an element of a user interface. Methods of using this system are also provided.
摘要:
The subject application relates to a system(s) and/or methodology that facilitate vision-based projection of any image (still or moving) onto any surface. In particular, a front-projected computer vision-based interactive surface system is provided which uses a new commercially available projection technology to obtain a compact, self-contained form factor. The subject configuration addresses installation, calibration, and portability issues that are primary concerns in most vision-based table systems.
摘要:
An interaction management module (IMM) is described for allowing users to engage an interactive surface in a collaborative environment using various input devices, such as keyboard-type devices and mouse-type devices. The IMM displays digital objects on the interactive surface that are associated with the devices in various ways. The digital objects can include input display interfaces, cursors, soft-key input mechanisms, and so on. Further, the IMM provides a mechanism for establishing a frame of reference for governing the placement of each cursor on the interactive surface. Further, the IMM provides a mechanism for allowing users to make a digital copy of a physical article placed on the interactive surface. The IMM also provides a mechanism which duplicates actions taken on the digital copy with respect to the physical article, and vice versa.