ACCOUNT FOR CLIPPED PIXELS IN AUTO-FOCUS STATISTICS COLLECTION
    21.
    发明申请
    ACCOUNT FOR CLIPPED PIXELS IN AUTO-FOCUS STATISTICS COLLECTION 有权
    自动聚焦统计收集中的剪辑像素帐户

    公开(公告)号:US20170064232A1

    公开(公告)日:2017-03-02

    申请号:US14836918

    申请日:2015-08-26

    Applicant: Apple Inc.

    Abstract: An image processing pipeline may account for clipped pixels in auto focus statistics. Generating auto focus statistics may include evaluating a neighborhood of pixels with respect to a given pixel in a stream of pixels for an image. If a clipped pixel is identified within the neighborhood of pixels then the evaluation of the given pixel may be excluded from an auto focus statistic. The image processing pipeline may also provide auto focus statistics that do not exclude clipped pixels. A luminance edge detection value may, in some embodiments, be generated by applying an IIR filter to the given pixel in a stream of pixels to band-pass filter the given pixel before including the band-pass filtered pixel in the generation of the luminance edge detection value.

    Abstract translation: 图像处理流水线可以解释自动对焦统计中的剪切像素。 产生自动对焦统计可以包括评估相对于图像的像素流中的给定像素的像素的邻域。 如果在像素附近识别出剪切像素,则可以从自动聚焦统计信息中排除给定像素的评估。 图像处理流水线还可以提供不排除剪切像素的自动对焦统计。 在一些实施例中,亮度边缘检测值可以通过将IIR滤波器应用于像素流中的给定像素,以便在产生亮度边缘之前包括带通滤波像素之前对给定像素进行带通滤波来生成 检测值。

    Adaptive Black-Level Restoration
    22.
    发明申请
    Adaptive Black-Level Restoration 有权
    自适应黑层恢复

    公开(公告)号:US20160373618A1

    公开(公告)日:2016-12-22

    申请号:US14836586

    申请日:2015-08-26

    Applicant: Apple Inc.

    CPC classification number: H04N5/165 H04N5/361 H04N9/646 H04N9/71

    Abstract: Methods and systems to improve the operation of graphic's system are described. In general, techniques are disclosed for compensating for an image sensor's non-zero black-level output. More particularly, a image sensor noise model may be used to offset an image's signal prior to clipping so that the image's dark signal exhibits a linear or near linear mean characteristic after clipping. In one implementation the noise model may be based on calibration or characterization of the image sensor prior to image capture. In another implementation the noise model may be based on an evaluation of the image itself during image capture operations. In yet another implementation the noise model may be based on analysis of an image post-capture (e.g., hours, days, . . . after initial image capture).

    Abstract translation: 描述了改进图形系统操作的方法和系统。 通常,公开了用于补偿图像传感器的非零黑电平输出的技术。 更具体地,可以使用图像传感器噪声模型来在削波之前偏移图像的信号,使得图像的暗信号在削波之后呈现线性或近似线性的平均特性。 在一个实现中,噪声模型可以基于在图像捕获之前的图像传感器的校准或表征。 在另一实现中,噪声模型可以基于在图像捕获操作期间对图像本身的评估。 在又一实现中,噪声模型可以基于后捕获图像的分析(例如,在初始图像捕获之后的小时,天数,...)。

    Adaptive auto exposure and dynamic range compensation
    23.
    发明授权
    Adaptive auto exposure and dynamic range compensation 有权
    自适应自动曝光和动态范围补偿

    公开(公告)号:US09432647B2

    公开(公告)日:2016-08-30

    申请号:US14269814

    申请日:2014-05-05

    Applicant: Apple Inc.

    CPC classification number: H04N9/735 H04N1/60 H04N1/6086 H04N5/2353 H04N5/3572

    Abstract: This disclosure pertains to systems, methods, and computer readable media for extending the dynamic range of images using an operation referred to herein as “Adaptive Auto Exposure” (AAE). According to the embodiments disclosed herein, the AAE-enabled higher dynamic range capture operations are accomplished without blending multiple or bracketed exposure captures (as is the case with traditional high dynamic range (HDR) photography). AAE also enables high signal-to-noise ratio (SNR) rendering when scene content allows for it and/or certain highlight clipping is tolerable. Decisions with regard to preferred AE strategies may be based, at least in part, on one or more of the following: sensor characteristics; scene content; and pre-defined preferences under different scenarios.

    Abstract translation: 本公开涉及用于使用本文称为“自适应自动曝光”(AAE)的操作来扩展图像的动态范围的系统,方法和计算机可读介质。 根据本文公开的实施例,在不混合多个或包围曝光捕获的情况下(如传统的高动态范围(HDR)拍摄的情况)),实现了启用AAE的较高动态范围捕获操作。 当场景内容允许时,AAE还能实现高信噪比(SNR)渲染,和/或某些高亮度剪辑是可以容忍的。 关于优选AE策略的决定可以至少部分地基于以下一个或多个:传感器特征; 场景内容; 和不同场景下的预定义偏好。

Patent Agency Ranking