Abstract:
The representative embodiments discussed in the present disclosure relate to techniques in which the operating characteristics (e.g., power consumption) of a power amplifier in a transceiver may be regulated according to an operation mode of the transceiver. More specifically, in some embodiments, different LUTs may be employed for each mode of operation to suitably adjust the supply voltage (e.g., bias voltage) and/or quiescent current input to the power amplifier based on an input signal and a margin by which transmission standards are met. Further, in some embodiments, a method to calibrate a LUT for average power tracking and/or envelope tracking in a transceiver mode of operation may be employed to populate a LUT that may be used to suitably adjust the power and/or current consumption of the power amplifier.
Abstract:
A test system for testing wireless circuitry in an electronic device is provided. The test system may include a test host and a tester. The tester may provide radio-frequency test signals to a device under test (DUT). The DUT may include radio-frequency decoding circuitry that processes the test signals using a communications protocol and digital demodulator circuitry that processes the test signals without using the communications protocol. The digital demodulator circuitry may include transformation circuitry that performs fast Fourier transforms on the test signals to create frequency-domain performance data. The test host may compute a noise floor and signal-to-noise ratio based on the frequency-domain performance data. The test host may compare the computed noise floor and signal-to-noise ratio to predetermined thresholds to characterize the radio-frequency performance of the wireless circuitry.
Abstract:
A wireless communication includes multiple transceivers that may be utilized for wireless communication over multiple frequency ranges. One of the transceivers is communicatively coupled to antennas that may be utilized to transmit or receive wireless signals having frequencies in different portions of one of the frequency ranges.
Abstract:
Wireless network interfaces that are capable of transmitting and/or receiving beamformed radiofrequency (RF) signals may be assisted by the use of codebooks. Electronic devices with memory to store a database of codebooks may be used to increase the number of entries available for operation. The database of codebooks may employ environmental parameters to improve efficiency of the wireless network interface. Methods for calibration of electronic devices and/or adjustment and selection of codebooks based on the parameters are also described. The calibration may employ a testing chamber that measure powers at in a limited number of angles.
Abstract:
An electronic device may include a feedback circuit that may determine an error of a first signal to be transmitted to a second electronic device. The electronic device may also include a transceiver that may adjust the first signal based on the error and send the adjusted first signal to the second electronic device. The electronic device may also include a coupler circuitry configured to route a second signal received from the second electronic device or a third electronic device to the feedback circuit, such that the feedback circuit may determine one or more properties associated with the second signal.
Abstract:
The representative embodiments discussed in the present disclosure relate to techniques in which the operating characteristics (e.g., power consumption) of a power amplifier in a transceiver may be regulated according to an operation mode of the transceiver. More specifically, in some embodiments, different LUTs may be employed for each mode of operation to suitably adjust the supply voltage (e.g., bias voltage) and/or quiescent current input to the power amplifier based on an input signal and a margin by which transmission standards are met. Further, in some embodiments, a method to calibrate a LUT for average power tracking and/or envelope tracking in a transceiver mode of operation may be employed to populate a LUT that may be used to suitably adjust the power and/or current consumption of the power amplifier.
Abstract:
The representative embodiments discussed in the present disclosure relate to techniques in which the operating characteristics (e.g., gain and/or efficiency) of a power amplifier in a transmitter may be regulated according to an operation mode of the transmitter. More specifically, in some embodiments, different LUTs may be employed for each mode of operation to suitably adjust the supply voltage to the power amplifier and modulate its operating characteristics based on power input to the power amplifier. Further, in some embodiments, a method to calibrate a LUT for ULCA, an operation mode of the transmitter, may be employed to populate a LUT that may be used to suitably adjust the supply voltage during ULCA.
Abstract:
Radio-frequency performance of wireless communications circuitry on an electronic device under test (DUT) may be tested without external test equipment such as signal analyzers or signal generators. A first DUT may transmit test signals to a second DUT. External attenuator circuitry interposed between the DUTs may attenuate the test signals to desired power levels. The second DUT may characterize and/or calibrate receiver performance by generating wireless performance metric data based on the attenuated test signals. A single DUT may transmit test signals to itself via corresponding transmit and receive ports coupled together through the attenuator. The DUT may generate performance metric data based on the test signals. The DUT may include feedback receiver circuitry coupled to an output of a transmitter via a feedback path and may characterize and/or calibrate transmit performance using test signals transmitted by the transmitter and received by the feedback receiver.