Abstract:
An additive manufacturing system includes a platen, a dispenser apparatus positioned above the platen to dispense a layer of powder over the platen, and an energy source to selectively fuse the layer of powder. The dispenser apparatus includes a support structure, a dispenser secured to the support structure and including a reservoir to hold the powder and one or more openings configured to deliver powder from the reservoir in a linear region that extends along a first axis, a spreader extending along the first axis and secured to the support structure and positioned to spread powder already delivered on the platen by the dispenser, and a drive system to move the support structure along a second axis perpendicular to the first axis such that the dispenser and blade move together to sweep the linear region along the second axis to deposit and level the powder.
Abstract:
A module for an additive manufacturing system includes a frame, a dispenser configured to deliver a layer of particles over a platen, an energy source to generate a beam to fuse the particles, and a metrology system having a first sensor to measure a property of the surface of layer before being fused and a second sensor to measure a property of the layer after being fused. The dispenser, first sensor, energy source and second sensor are positioned on the frame in order along a first axis, and the dispenser, first sensor, energy source and second sensor are fixed to the frame such that the frame, dispenser, first sensor, energy source and second sensor can be mounted and dismounted as a single unit from a movable support.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery assembly. The energy delivery assembly includes a light source to emit one or more light beams, a first reflective member having a plurality of reflective facets, and at least one second reflective member. The first reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer. The at least one second reflective member is movable such that the at least one second reflective surface is repositionable to receive at least one of the at least one light beam and redirect the at least one of at least one light beam along a two-dimensional path on the uppermost layer.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery system. The energy deliver system includes a light source to emit a light beam, and a reflective member having a plurality of reflective facets. The reflective member is positioned in a path of the light beam to receive the light beam and redirect the light beam toward the top surface of the platform to deliver energy to an uppermost layer of the layers of feed material to fuse the feed material. The reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer.
Abstract:
An apparatus includes a platen and a dispensing system overlying the platen. The dispensing system includes a powder source. The dispensing system further includes a powder conveyor extending over the top surface of the platen, rings arranged coaxially along a longitudinal axis of the powder conveyor, and a cap plate extending along a length of the tube. The powder conveyor is configured to receive powder from the powder source. The powder conveyor is configured to move the powder. The rings form a tube surrounding the powder conveyor to contain the powder. Each concentric ring includes a ring opening. Each ring is configured to be independently rotatable. The cap plate includes a cap plate opening. The powder is dispensed from the tube through the ring opening and the cap plate opening when the ring opening and the cap plate opening are aligned.
Abstract:
An apparatus for forming an object includes a platform and a dispensing system overlying the platform to dispense successive layers of powder. The successive layers include support layers and object layers on the support layers. The apparatus further includes an energy source to fuse the powder. A controller is configured to cause the energy source to fuse a support region of each of the support layers to form a part support base. The controller is further configured to cause the energy source to fuse an enclosure region of each of the object layers to form an enclosure dividing each of the object layers into an inner region and outer region. The controller is also configured to cause the energy source to fuse an object portion of the inner region of each of the object layers. A parallel projection of the object defines a part area contained within the inner region.
Abstract:
An apparatus for forming an object includes a platform to support the object. The platform includes a first support plate including first holes and a second support plate arranged below the first support plate and including second holes. The second support plate is movable relative to the first support plate between an aligned configuration and a misaligned configuration. The apparatus further includes a dispensing system overlying the support plate to dispense a powder over the top surface of the first support plate and an energy source to apply energy to the powder dispensed on the top surface of the first support plate to form a fused portion of the powder. In the aligned configuration, the first holes are aligned with the second holes such that unfused powder can pass through the first holes into the second holes. In the misaligned configuration, the first holes are misaligned with the second holes.