Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery assembly. The energy delivery assembly includes a light source to emit one or more light beams, a first reflective member having a plurality of reflective facets, and at least one second reflective member. The first reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer. The at least one second reflective member is movable such that the at least one second reflective surface is repositionable to receive at least one of the at least one light beam and redirect the at least one of at least one light beam along a two-dimensional path on the uppermost layer.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery system. The energy deliver system includes a light source to emit a light beam, and a reflective member having a plurality of reflective facets. The reflective member is positioned in a path of the light beam to receive the light beam and redirect the light beam toward the top surface of the platform to deliver energy to an uppermost layer of the layers of feed material to fuse the feed material. The reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery assembly. The energy delivery assembly includes a light source to emit one or more light beams, a first reflective member having a plurality of reflective facets, and at least one second reflective member. The first reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer. The at least one second reflective member is movable such that the at least one second reflective surface is repositionable to receive at least one of the at least one light beam and redirect the at least one of at least one light beam along a two-dimensional path on the uppermost layer.
Abstract:
Apparatus for the removal of exhaust gases are provided herein. In some embodiments, an apparatus may include a carrier for supporting one or more substrates in a substrate processing tool, the carrier having a first exhaust outlet, and an exhaust assembly including a first inlet disposed proximate the carrier to receive process exhaust from the first exhaust outlet of the carrier, a second inlet to receive a cleaning gas, and an outlet to remove the process exhaust and the cleaning gas.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery assembly. The energy delivery assembly includes a light source to emit one or more light beams, a first reflective member having a plurality of reflective facets, and at least one second reflective member. The first reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer. The at least one second reflective member is movable such that the at least one second reflective surface is repositionable to receive at least one of the at least one light beam and redirect the at least one of at least one light beam along a two-dimensional path on the uppermost layer.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, and an energy delivery system. The energy deliver system includes a light source to emit a light beam, and a reflective member having a plurality of reflective facets. The reflective member is positioned in a path of the light beam to receive the light beam and redirect the light beam toward the top surface of the platform to deliver energy to an uppermost layer of the layers of feed material to fuse the feed material. The reflective member is rotatable such that sequential facets sweep the light beam sequentially along a path on the uppermost layer.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser to dispense a plurality of layers of feed material on a top surface of the platform, an energy delivery system, and an actuator. The energy delivery system includes a light source to emit a light beam, and a reflective member having a plurality of reflective facets, the reflective member positionable in a path of the light beam to receive the light beam and redirect the light beam toward the top surface of the platform to deliver energy to an uppermost layer of the layers of feed material to fuse the feed material. The reflective member is rotatable such that sequential facets sweep the light beam sequentially along a linear path on the uppermost layer. The actuator is configured to adjust an angle of the linear path relative to the platform.
Abstract:
A dispensing system for an additive manufacturing includes a powder source that contains powder to form an object, and an array of nozzles positioned at a base of the powder source over a top surface of a platen where the object is to be formed. The powder flows from the powder source through the nozzles to the top surface. A respective powder wheel in each nozzle controls a flow rate of the powder. Each wheel has multiple troughs on surface of the wheel. When a motor rotates the wheel, the troughs transport the powder through the nozzle. The rotation speed of the wheel controls the flow rate. For solid parts of the object, the wheel rotates and allows the powder to be deposited on the top surface. For empty parts of the object, the wheel remains stationary to prevent the powder from flowing to the surface.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser configured to deliver a plurality of successive layers of feed material onto the platform, at least one light source configured to generate a first light beam and a second light beam, a polygon mirror scanner, an actuator, and a galvo mirror scanner. The polygon mirror scanner is configured to receive the first light beam and reflect the first light beam towards the platform. Rotation of the first polygon mirror causes the light beam to move in a first direction along a path on a layer of feed material on the platform. The actuator is configured to cause the path to move along a second direction at a non-zero angle relative to the first direction. The galvo mirror scanner system is configured to receive the second light beam and reflect the second light beam toward the platform.
Abstract:
An additive manufacturing apparatus includes a platform, a dispenser configured to deliver a plurality of successive layers of feed material onto the platform, a light source assembly to generate a first light beam and a second light beam, a beam combiner configured to combine the first light beam and the second light beam into a common light beam, and a mirror scanner configured to direct the common light beam towards the platform to deliver energy along a scan path on an outermost layer of feed material.