Abstract:
The present invention relates to display technology and provides a manufacturing method of flexible display devices and a substrate structure, used for uniformly stripping a flexible substrate of the flexible display device from a bearing substrate. The method includes: forming an adhesive layer on the bearing substrate; forming the flexible substrate on the adhesive layer, and fixing the flexible substrate to the bearing substrate through the adhesive layer; forming display elements on a surface of the flexible substrate opposite to the other surface which adhered to the adhesive layer; arranging a heater on a surface of the bearing substrate opposite to the other surface on which formed the adhesive layer; strip the flexible substrate from the bearing substrate by heating the adhesive layer via the heater, thus obtain the flexible display device, wherein the viscidity of the adhesive in the adhesive layer is degraded after being heated.
Abstract:
The present invention provides a thin film transistor, an array substrate and a display device. The thin film transistor comprises an active layer, a source electrode and a drain electrode. The active layer comprises a source electrode contact region and a drain electrode contact region, and a semiconductor channel region arranged between the source electrode contact region and the drain electrode contact region. A conductive layer is provided on the semiconductor channel region and is spaced apart from the source electrode and the drain electrode.
Abstract:
A display panel and a display device are provided. The display panel includes a plurality of pixel units, each pixel unit includes a pixel circuit and a light-emitting element, the pixel circuit is configured to drive the light-emitting element, the pixel circuit includes a driving transistor, the plurality of pixel units include a first pixel unit and a second pixel unit, the first pixel unit is configured to emit light of a first color, the second pixel unit is configured to emit light of a second color, the driving transistor of the pixel circuit of the first pixel unit includes a first channel, and the driving transistor of the pixel circuit of the second pixel unit includes a second channel, a width-to-length ratio of the first channel is greater than that of the second channel, and a shape of the first channel is different from that of the second channel.
Abstract:
An array substrate (10) and a display device (16) are provided, and the array substrate includes a base substrate (1) and includes a pixel array (1) and an auxiliary conductive structure (3) which are on the base substrate (1); the pixel array includes a plurality of pixel units (2) arranged in an array and a plurality of pixel electrodes (21), and each of the plurality of pixel units (2) includes at least one of the plurality of pixel electrodes (21); the auxiliary conductive structure (3) surrounds at least one of the plurality of pixel electrodes (21) and is insulated from the plurality of pixel electrodes (21); a resistivity of a material of the auxiliary conductive structure (3) is less than or equal to a resistivity of a material of the at least one of the plurality of the pixel electrodes (21). The auxiliary conductive structure (3) receives and transmits interfering charges around the pixel electrode (21), so that the interfering charges are kept away from the pixel electrode (21), and thereby interference of the interfering charges on the pixel electrode (21) is prevented or reduced.
Abstract:
An array substrate and a fabrication method thereof, an array substrate motherboard, and a display device are disclosed. The array substrate includes a display region and a bonding region outside the display region. The array substrate further includes: a bonding electrode, located in the bonding region and spaced apart from an outer edge of the bonding region; and an electrostatic barrier line, the electrostatic barrier line has one end electrically connected with the bonding electrode, and the other end extends to the outer edge of the bonding region, and resistivity of the electrostatic barrier line is greater than resistivity of the bonding electrode.
Abstract:
Provided are a gate drive unit, a gate drive circuit, a drive method and a display apparatus. The gate drive unit includes an input control module, an input module, a potential pull-down module, a first output module, a second output module, an isolation module, a first node and a second node, wherein the input control module controls operation of the input module under action of a second input signal and a first clock signal; the input module transmits a second clock signal to the second node under control of the input control module; the potential pull-down module pulls down a potential of the second node under action of a potential of the first node; the first output module outputs a first output signal under action of the potential of the first node, the potential of the second node and the first clock signal.
Abstract:
The present disclosure provides an array substrate and a display device. The array substrate comprises a plurality of pixel units arranged in an array, each pixel unit including a light emitting unit and a pixel definition layer disposed around the light emitting unit; wherein in at least one pixel unit, a light wave partition groove is provided in the pixel definition layer on at least one side of the light emitting unit, and a light wave blocking layer is provided in the light wave partition groove.
Abstract:
An array substrate and a display device are disclosed. The array substrate includes: a base substrate; and a first electrically conductive layer and a second electrically conductive layer on the base substrate, wherein the base substrate is provided with at least one TFT, each of the at least one TFT includes a gate electrode disposed in the first electrically conductive layer, and a source electrode and a drain electrode disposed in the second electrically conductive layer, and wherein the drain electrode has a comb shape and includes a plurality of drain electrode sub-portions extending parallel to one another, and the source electrode has a comb shape and includes a plurality of source electrode sub-portions extending parallel to one another, and wherein at least one of the drain electrode and the source electrode includes an electrode body and an extending portion, the electrode body overlapping with the gate electrode, and the extending portion overlapping with a portion of the first electrically conductive layer other than the gate electrode.
Abstract:
An array substrate having a display region and a non-display region, includes signal lines at least located in the display region, signal line leads located in the non-display region, connection portions located in the non-display region for coupling the signal lines to the signal line leads, and the signal lines and the signal line leads are two separate portions.
Abstract:
An array substrate has a display area and a non-display area disposed at a periphery of the display area. The array substrate includes: a base substrate; at least one gate driver on array (GOA) circuit disposed on the base substrate and disposed in the non-display area; a planarization layer disposed on a side of the at least one GOA circuit facing away from the base substrate; and at least one electrostatic protection portion disposed on a surface of the planarization layer facing away from the base substrate and disposed in the non-display area. An orthographic projection of each GOA circuit on the base substrate is located within an outer boundary of an orthographic projection of a corresponding electrostatic protection portion on the base substrate.