Abstract:
A method for forming a shallow junction in a semiconductor device includes the steps of ion implanting a molecular antimony dimer (Sb2+) into a semiconductor substrate. The antimony dimer implantation process creates a shallow doped junction having a high dopant concentration and a shallow junction depth. The antimony dimer ion is extracted from an antimony source material at an extremely low extraction voltage. The use of a low extraction voltage enables the antimony dimer ion to be analyzed by an analyzer magnetic within the ion implantation device. The process of the invention can be used to form a variety of shallow dope structures in semiconductor devices, such as source/drain extension regions, implanted resistors, and the like.
Abstract:
Lightly doped regions are implanted into an amorphous region in the semiconductor substrate to significantly reduce transient enhanced diffusion upon subsequent activation annealing. A sub-surface non-amorphous region is also formed before activation annealing to substantially eliminate end-of-range defects on crystallization of amorphous region containing the lightly doped implants.
Abstract:
A method of hardening photoresist (24) by bombardment with ionized particles (42), such as argon. Ionic bombardment causes formation of a hardened skin (22) on the exposed top (30) and side walls (32) of the photoresist (24). The hardened skin erodes at a reduced rate during etching and is less likely to react with products created during etching, thereby allowing etching of more accurate line widths and gaps.