Abstract:
A method of forming a superconducting joint between the Nb.sub.3 Sn layer of a superconducting tape and a superconducting NbTi wire through use of a Pb-Bi bath, joint securing arrangement and mold around the joint.
Abstract:
A stable superconducting switch suitable for use in a conduction-cooled superconducting magnet includes a tape wound in a coil with the tape including an Nb.sub.3 Sn conductor sandwiched between stabilizing layers of copper, bronze or brass and wound in layers, with groups of layers separated by a partial layer of electrically conductive material.
Abstract:
An apparatus and method for shimming a magnetic field of a magnet in a volume of interest includes a nonmagnetic holder configured with an array of fluid containing pockets; and a solidified ferromagnetic fluid in each pocket of the array of fluid containing pockets, wherein the solidified ferromagnetic fluid is fabricated from a ferromagnetic fluid, a diluting liquid, a hardener, and an accelerator agent. The ferromagnetic fluid includes a carrier liquid, ferromagnetic particles, and a surfactant.
Abstract:
A method for bonding a plurality of magnetized blocks together includes providing at least two magnetized blocks, and bonding at least two magnetized blocks together using a door translatable in two orthogonal directions.
Abstract:
A method for positioning permanent magnetic blocks includes providing a plurality of magnetized blocks, positioning the magnetized blocks on a yoke in a row by applying a mechanical force at a first end of the row with a first clamping member and at a second end of the row with a second clamping member, and repositioning the blocks by reducing the mechanical force at the first end by moving the first clamping member away from the first end, and moving the second clamping member toward the second end.
Abstract:
The present invention is directed to a method of shimming a magnet assembly of an MR imaging system such that a desired B0 field strength may be created with minimal inhomogeneities therethrough. With this method, sufficient shimming of the magnet assembly may be achieved without requiring mechanical variations to the magnet assembly after the magnet assembly has been assembled. The invention analyzes variations from the desired B0 field and inhomogeneities at a number of target points along the magnet assembly or B0 field. A comparison is then made at each point to determine a shimming or weighting factor such that the desired overall B0 field strength and targeted field homogeneity is achieved. Active and/or passive shim elements may then be incorporated into the magnet assembly at each target point to achieve the desired overall field strength and minimum overall field homogeneity.
Abstract:
A method for shimming a magnetic resonance imaging magnet requiring higher magnetic field homogneity on a small imaging volume and by magnetic field measurements on a larger volume providing small measurement error and practical field strength measurements and utilizing the spherical harmonic coefficients of the measurements.
Abstract:
A quench-protecting superconductive-magnet electrical circuit. An impregnated superconductive-switch wire is coupled to the leads of a cryostable superconductive-coil assemblage having series-coupled coil portions. Series-coupled fan-in resistive heaters are also coupled in parallel with corresponding coil portions and are positioned thermally proximate the superconductive-switch wire. Fan-out resistive heaters are coupled in parallel with corresponding coil portions and are positioned thermally proximate corresponding coil portions. A local quench in one coil portion activates its corresponding fan-in resistive heater which quenches the superconductive-switch wire which activates all of the fan-out resistive heaters which globally quenches all of the coil portions thereby preventing local quench damage.
Abstract:
A magnetic resonance imaging magnet including a superconducting gradient shield positioned around the gradient coil and contiguous to the cryogen vessel, with the gradient shield being selectively placed in superconducting operation to shield the magnet coils and structures from the magnetic fields generated by firing the imaging gradient coil positioned within the bore of the magnetic resonance imaging magnet. A plurality of thermally conductive members are compressed between the cryogen vessel and the gradient shield.
Abstract:
A magnet including spaced-apart first and second pole pieces with generally opposing first and second pole faces. The first pole face has an axis extending generally towards the second pole face and has a surface region which includes at least two frustoconical surfaces. The frustoconical surfaces are generally coaxially aligned about the axis, and radially-adjacent frustoconical surfaces abut each other. In a second embodiment, points on the surface region located an identical radial distance from the axis are also located a common axial distance along the axis, and a graph of axial distance along the axis versus radial distance from the axis for such points is a curve having a continuous slope with at least two sign reversals. Such contoured pole faces allow for a smoother magnetic field to better reduce axisymmetric magnetic field inhomogeneity.