Abstract:
In one embodiment, a network controller identifies a first sign of life for an edge device in a communication network (e.g., when the network controller receives an encapsulated workflow request for the edge device over a control plane of the communication network). The network controller further imports the encapsulated workflow request from the edge device over the control plane, determines configuration parameters for a tenant and a tenant network from the encapsulated workflow request, and transmits the configuration parameters to the edge device to provision the edge device for the tenant according to the configuration parameters.
Abstract:
A method is provided in one example embodiment and includes receiving a request to create a path through a network, wherein the path originates on a first network device and terminates on the second network device; identifying a first controller associated with the first network device, wherein the first controller proxies control plane functions for the first network device; identifying a second controller associated with the second network device, wherein the second controller proxies control plane functions for the second network device; and computing the path using the first controller as a source and the second controller as a destination. The first controller installs the computed path on the first network device and the second controller installs the computed path on the second network device.
Abstract:
In one embodiment, a network controller identifies a first sign of life for an edge device in a communication network (e.g., when the network controller receives an encapsulated workflow request for the edge device over a control plane of the communication network). The network controller further imports the encapsulated workflow request from the edge device over the control plane, determines configuration parameters for a tenant and a tenant network from the encapsulated workflow request, and transmits the configuration parameters to the edge device to provision the edge device for the tenant according to the configuration parameters.
Abstract:
A system and method for advertising out-of-resources (OOR) conditions for entities, such as nodes, line cards and data links, in a manner that does not involve using a maximum cost to indicate the entity is “out-of-resources.” According to the technique, an OOR condition for an entity is advertised in one or more type-length-value (TLV) objects contained in an advertisement message. The advertisement message is flooded to nodes on a data network to inform them of the entity's OOR condition. Head-end nodes that process the advertisement message may use information contained in the TLV object to determine a path for a new label switched path (LSP) that does not include the entity associated with the OOR condition.
Abstract:
A method is provided in one example embodiment and includes receiving a request to create a path through a network, wherein the path originates on a first network device and terminates on the second network device; identifying a first controller associated with the first network device, wherein the first controller proxies control plane functions for the first network device; identifying a second controller associated with the second network device, wherein the second controller proxies control plane functions for the second network device; and computing the path using the first controller as a source and the second controller as a destination. The first controller installs the computed path on the first network device and the second controller installs the computed path on the second network device.
Abstract:
In one embodiment, a particular PE device of a plurality of multi-homing PE devices between a core network and a local network determines a subset of traffic for which the particular PE device is responsible. The particular PE also establishes, with itself as root, a multicast tree within the local network for underlay multicast groups. Traffic received at the particular PE from the core network is admitted into the local network only if the core traffic corresponds to the subset of traffic for which the particular PE device is responsible (and mapped into one of the underlay multicast groups for which the particular PE device is the root). Also, multicast traffic received at the particular PE from the local network is forwarded into the core network only if the multicast traffic corresponds to the subset of traffic for which the particular PE device is responsible.
Abstract:
In one embodiment, one or more point-to-point (P2P) services are established between attachment circuits on provider edge (PE) devices in a computer network, and each of the one or more P2P services (e.g., Virtual Private Wire Service, VPWS) are associated with an Ethernet virtual private network (E-VPN) Ethernet Auto-Discovery (A-D) route, where links between the PE devices and customer edge (CE) devices are configured as Ethernet interfaces with Ethernet tagging. As such, the Ethernet A-D route may then be exchanged for each P2P service attachment circuit, and forwarding can be performed on the one or more P2P services without performing a media access control (MAC) address lookup and without performing MAC learning.
Abstract:
In one embodiment, a source transmits one or more data packets to a destination over a primary pseudowire (PW). When a device on the primary PW detects a downstream failure of the primary PW, and in response to receiving one or more data packets from a source from the failed primary PW, the device adds a loopback packet identifier to the one or more received data packets, and returns the one or more data packets with the loopback packet identifier to the source upstream on the primary PW. Accordingly, in response to receiving the data packet returned with a loopback packet identifier from the primary PW (in response to the downstream failure), the source retransmits the one or more data packets to the destination over a backup PW.
Abstract:
A system and method for advertising out-of-resources (OOR) conditions for entities, such as nodes, line cards and data links, in a manner that does not involve using a maximum cost to indicate the entity is “out-of-resources.” According to the technique, an OOR condition for an entity is advertised in one or more type-length-value (TLV) objects contained in an advertisement message. The advertisement message is flooded to nodes on a data network to inform them of the entity's OOR condition. Head-end nodes that process the advertisement message may use information contained in the TLV object to determine a path for a new label switched path (LSP) that does not include the entity associated with the OOR condition.
Abstract:
An example method for instantiating a network using a network function virtualization infrastructure (NVFI) pod in a network environment is provided and includes receiving a request to instantiate a logical network topology in the NFVI pod that includes a pre-selected set of interconnected pre-configured hardware resources, the abstract network topology including a virtual network function (VNF) forwarding graph (FG), distilling the VNF FG into various interconnected VNFs, deploying various VNFs of the VNF FG to a plurality of virtual machines, and instantiating the network topology on appropriate hardware resources in the NFVI pod. In specific embodiments, the pre-selected set of interconnected pre-configured hardware resources includes a plurality of compute servers, a plurality of controller servers, a set of network resources, and a plurality of storage resources. It may also include a high performance virtual switch operating in a user space of respective memory elements of a plurality of servers.