Abstract:
Methods and systems relate to the in-situ removal of heavy metals such as mercury, arsenic, etc., from produced fluids such as gases and crudes from a subterranean hydrocarbon-bearing formation. A sufficient amount of a fixing agent is injected into formation with a dilution fluid. The fixing agent reacts with the heavy metals forming precipitate, or is extracted heavy metals into the dilution fluid as soluble complexes. In one embodiment, the heavy metal precipitates remain in the formation. After the recovery of the produced fluid, the dilution fluid containing the heavy metal complexes is separated from the produced fluid, generating a treated produced fluid having a reduced concentration of heavy metals. In one embodiment, the dilution fluid is water, and the wastewater containing the heavy metal complexes after recovery can be recycled by injection into a reservoir.
Abstract:
A predictive tool is provided for estimating the mercury content of hydrocarbons to be produced from a wellbore in a newly investigated subterranean hydrocarbon producing formation based on the mercury content of an inorganic sample recovered from the wellbore. The mercaptans content of liquid hydrocarbons and/or the hydrogen sulfide content of natural gas produced from the formation may also be used to enhance the prediction. Based on the predicted value, a mercury mitigation treatment may be provided to mitigate the mercury content of hydrocarbons produced from the formation.
Abstract:
The simultaneous control of the two forms of mercury in petroleum reservoirs (elemental and particulate HgS) is accomplished by the use of agents which react with the elemental mercury and bind the particulate HgS to the formation material: a mercury capture agent and a chemical sand control agent. The elemental control agent reacts with and adsorbs the elemental mercury. The chemical sand control agents reduce or eliminate the dislodging of fine particulate mercury from the surface of the formation material. This simultaneous control can be applied for a new well during well completion operations wherein analyses indicate the presence of mercury. This simultaneous control can also be applied to a currently producing well during a work-over when mercury is detected in the gas or crude products.