Abstract:
Disclosed is a process to remove neutrally buoyant metal particles composed of solid particles and droplets of oil from water such as produced water from petroleum production or refinery wastewater. In one aspect, the water is contacted with oleophilic adsorbent materials which adsorb the neutrally buoyant metal particles. Also disclosed is a process for removing metal particles from a fluid volume that includes crude oil and/or condensate. The fluid volume is washed with a volume of water to form a volume of wastewater, thereby transferring at least a portion of the metal particles from the fluid into the wastewater. The volume of wastewater including the transferred metal particles is then contacted with an oleophilic adsorbent material wherein the neutrally buoyant metal particles are adsorbed by the adsorbent material. The adsorbent material is then separated from the wastewater. Finally, the treated wastewater is used to wash the crude and/or condensate.
Abstract:
A sulfidic complexing agent is disclosed that includes a suspension or a solution formed by a reaction between a water-soluble metal compound and a water-soluble sulfidic compound. The sulfidic complexing agent has a pH of from about 5 to about 11 and a molar ratio of metal to sulfur of from about 0.1 to about 1,000. The sulfidic complexing agent is useful for removing elemental mercury from a hydrocarbon fluid by contacting the hydrocarbon fluid with the sulfidic complexing agent. The molar ratio of sulfur in the sulfidic complexing agent to mercury in the hydrocarbon fluid is from about 50 to about 2,500. Also disclosed is a method for concurrently transporting and removing a trace amount of volatile mercury in a CO2-containing natural gas stream extracted from a subterranean formation. The natural gas stream is transported in a pipeline into which the sulfidic complexing agent is injected. Also disclosed is a method for capturing gas phase elemental mercury from a gas stream in the overhead section of a crude oil distillation unit by contacting the gas stream with the sulfidic complexing agent in the overhead section of the distillation unit to form a treated gas stream.
Abstract:
Disclosed is a process to remove neutrally buoyant metal particles composed of solid particles and droplets of oil from water such as produced water from petroleum production or refinery wastewater. In one aspect, the water is contacted with oleophilic adsorbent materials which adsorb the neutrally buoyant metal particles. Also disclosed is a process for removing metal particles from a fluid volume that includes crude oil and/or condensate. The fluid volume is washed with a volume of water to form a volume of wastewater, thereby transferring at least a portion of the metal particles from the fluid into the wastewater. The volume of wastewater including the transferred metal particles is then contacted with an oleophilic adsorbent material wherein the neutrally buoyant metal particles are adsorbed by the adsorbent material. The adsorbent material is then separated from the wastewater. Finally, the treated wastewater is used to wash the crude and/or condensate.
Abstract:
Trace amount levels of heavy metals such as mercury in crude oil are reduced by contacting the crude oil with a sufficient amount of a reducing agent to convert at least a portion of the non-volatile mercury into a volatile form of mercury, which can be subsequently removed by any of stripping, scrubbing, adsorption, and combinations thereof. In one embodiment, at least 50% of the mercury is removed. In another embodiment, the removal rate is at least 99%. In one embodiment, the reducing agent is selected from sulfur compounds containing at least one sulfur atom having an oxidation state less than +6; ferrous compounds; stannous compounds; oxalates; cuprous compounds; organic acids which decompose to form CO2 and/or H2 upon heating; hydroxylamine compounds; hydrazine compounds; sodium borohydride; diisobutylaluminium hydride; thiourea; transition metal halides; and mixtures thereof.
Abstract:
A process and system are described for the processing of gas associated with crude oil production, i.e. associated gas. A separation complex is used to separate produced fluids produced from a hydrocarbon reservoir into crude oil, liquefied petroleum gas, water, and natural gas. At least a portion of the natural gas is converted into synthesis gas in a synthesis gas generator. A combination of a synthesis gas conversion catalysts and hydroconversion catalysts are used in a synthesis gas reactor to convert the synthesis gas into a liquid effluent stream containing liquefied petroleum gas and a synthetic crude oil. The liquefied petroleum gas and synthetic crude oil from the synthesis gas reactor is sent to the separation complex. Liquefied petroleum gas is separated both from the synthetic crude oil and a natural crude oil obtained from the produced fluids. The system and process permits synthetic crude oil to be blended with the natural crude oil producing a blended stabilized crude oil having 2 wt % or more of the synthetic crude oil and with a pour point of 60° C. or less. Use of a common facility for separation operations on the natural crude oil and synthetic crude oil thus reduces capital costs and allows converted associated gases to be shipped with the natural crude oil on a conventional crude oil tanker.
Abstract:
A predictive tool is provided for estimating the mercury content of hydrocarbons to be produced from a wellbore in a newly investigated subterranean hydrocarbon producing formation based on the mercury content of an inorganic sample recovered from the wellbore. The mercaptans content of liquid hydrocarbons and/or the hydrogen sulfide content of natural gas produced from the formation may also be used to enhance the prediction. Based on the predicted value, a mercury mitigation treatment may be provided to mitigate the mercury content of hydrocarbons produced from the formation.
Abstract:
A hydrophobic adsorbent composition and process for removal of mercury from a gas phase fluid near the water and/or hydrocarbon dew point is disclosed herein.
Abstract:
A process for removing non-volatile, particulate mercury from crudes and condensates is disclosed. Particulate mercury in crudes can be removed by a process of first adding a halogen, such as I2. The halogen converts at least 10% of the particulate mercury into an oil-soluble mercury compound that cannot be removed by filtration or centrifugation. This oil-soluble mercury compound can then be removed by adsorption onto a solid adsorbent. The process can operate at near ambient conditions. The adsorption step can be carried out by mixing a particulate adsorbent in the halogen-treated crude and then removing it by centrifugation, desalting, filtration, hydrocyclone or by settling.
Abstract:
A method is provided for recovering mercury from a crude oil into an alkaline ammonium sulfide contacting solution. Soluble mercury complexes in the contacting solution are converted to particulate mercury. The particulate mercury can be recovered by filtering, and the ammonium sulfide in the contacting solution recycled to the aqueous contacting solution.
Abstract:
Particulate mercury, in the form of metacinnabar, is removed from crude oil by thermally treating the crude oil at temperatures in a range from 150° C. to 350° C. and at a pressure sufficient to limit the amount of crude vaporizing to no more than 10 wt. %. In the thermal treatment, the particulate mercury is converted into elemental mercury, which can be removed by directly adsorption from the crude onto a support. In one embodiment, the elemental mercury can be removed by stripping the crude with a gas, and then adsorbing the mercury onto a support. The crude oil can be optionally treated prior to stabilization and contains 0.1 wt. % or more of C4-hydrocarbons. Following the thermal treatment, the treated crude is cooled and the pressure is reduced. The C4-hydrocarbons then vaporize from the crude and carry the elemental mercury with them. The elemental mercury in this hydrocarbon gas stream may then be removed by a solid adsorbent.