Abstract:
A method for determining an optimum write power for writing data to an optical disc is disclosed. The method includes utilizing a plurality of candidate write powers for writing data to the optical disc; measuring at least a writing quality parameter corresponding to each of the candidate write powers, respectively; determining a characteristic curve of the writing quality parameters to the candidate write powers; and determining the optimum write power according to a write power corresponding to a target inflection point of the characteristic curve.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of patterns. Each pattern corresponds to a pit or a land on a phase-changed type optical storage medium accessed by the optical storage device. The method further includes performing calculations corresponding to a plurality of data types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data types. Each pattern belongs to a data type. The data-to-clock edge deviations are utilized for tuning the write strategy parameters corresponding to the data types respectively.
Abstract:
A method for improving readability of an optical disc includes: changing a first control parameter of an optical storage apparatus that accesses the optical disc and obtaining a plurality of associated values of an index corresponding to the readability of the optical disc for respective changed/unchanged values of the first control parameter; setting the first control parameter to be an optimal value out of the changed/unchanged values of the first control parameter according to the index; changing a second control parameter with the first parameter set to be the optimal value to obtaining a plurality of associated values of the index for respective changed/unchanged values of the second control parameter; and setting the second control parameter to be an optimal value according to the index. The control parameters having their individual optimal values are utilized for further control during decoding. In addition, an associated optical storage apparatus is further provided.
Abstract:
The invention discloses an error-correcting apparatus for decoding an input signal by using a Viterbi algorithm to generate a Viterbi-decoded signal, including an erasure unit and a decoder. The erasure unit is configured to generate at least one logic signal according to at least one path metric difference of path metrics in the Viterbi algorithm, and generate erasure information, wherein the erasure information indicates data reliability of at least one location of the Viterbi-decoded signal. The decoder is configured to decode the Viterbi-decoded signal according to the erasure information.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device, performing calculations corresponding to a plurality of data set types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data set types, and utilizing the data-to-clock edge deviations for tuning the write strategy parameters corresponding to the data set types respectively.
Abstract:
An optical recording system and method. A radiation source provides a radiation beam writing marks separated by spaces on a rewritable optical disc. A pulse generator generates a recording pulse signal based on a preset data signal to drive the radiation source, wherein the recording pulse signal comprises a cooling pulse, and wherein the preset data signal corresponds to a mark and space of equal length and is recorded onto the rewritable optical disc in terms of a written mark and space. A pulse controller determines a final width for the cooling pulse according to a difference between lengths of the written mark and the written space.
Abstract:
The invention relates to recording on a medium, and in particular, to laser control during recording data on an optical medium. A laser control method for dynamically adjusting laser power during recording data onto an optical disc comprises: recording normal data onto the optical disc according to an initial laser power; stopping recording when a trigger is generated; reading back the recorded normal data and generating a first recording quality index; recording a test pattern at a test pattern starting point according to a selected laser power; reading back the test pattern and generating a second recording quality index; and determining an adaptive laser power to continually record the normal data according to the first recording quality index and the second recording quality index.
Abstract:
A method for determining an optimum write power for writing data to an optical disc is disclosed. The method includes utilizing a plurality of candidate write powers for writing data to the optical disc; measuring at least a writing quality parameter corresponding to each of the candidate write powers, respectively; determining a characteristic curve of the writing quality parameters to the candidate write powers; and determining the optimum write power according to a write power corresponding to a target inflection point of the characteristic curve.
Abstract:
A method for tuning a plurality of write strategy parameters of an optical storage device includes detecting a plurality of lengths, each length corresponding to a pit or a land on an optical storage medium accessed by the optical storage device, performing calculations corresponding to a plurality of data set types and generating a plurality of data-to-clock edge deviations respectively corresponding to the data set types, and utilizing the data-to-clock edge deviations for tuning the write strategy parameters corresponding to the data set types respectively.
Abstract:
A method of determining a write strategy when storing data on an optical disc in an optical storage device includes detecting a characteristic of the optical disc, determining an initial write strategy according to the detected characteristic of the optical disc, adjusting the initial write strategy by performing a write pulse adjustment including adjusting a first edge of a write pulse in the initial write strategy by a first time unit to thereby generate an adjusted write strategy, writing data on the optical disc utilizing the adjusted write strategy, measuring reproduced signal quality values when reading the data from the optical disc, and determining a write strategy according to the reproduced signal quality values.