PARTIAL REROUTE OF TRAFFIC ONTO A BACKUP TUNNEL USING PREDICTIVE ROUTING

    公开(公告)号:US20200379839A1

    公开(公告)日:2020-12-03

    申请号:US16429379

    申请日:2019-06-03

    Abstract: In one embodiment, a device predicts a failure of a first tunnel in a software-defined wide area network (SD-WAN). The device determines that no backup tunnel for the first tunnel exists in the SD-WAN that can satisfy one or more service level agreements (SLAs) of traffic on the first tunnel, were the traffic rerouted from the first tunnel onto that tunnel. The device predicts, using a machine learning model, that a backup tunnel for the first tunnel exists in the SD-WAN that can satisfy an SLA of a subset of the traffic on the first tunnel, in response to determining that no backup tunnel exists in the SD-WAN that can satisfy the one or more SLAs of the traffic on the first tunnel. The device proactively reroutes the subset of the traffic on the first tunnel onto the backup tunnel, in advance of the predicted failure of the first tunnel.

    Detection and resolution of rule conflicts in device classification systems

    公开(公告)号:US11290331B2

    公开(公告)日:2022-03-29

    申请号:US16428202

    申请日:2019-05-31

    Abstract: In one embodiment, a service receives a plurality of device type classification rules, each rule comprising a device type label and one or more device attributes used as criteria for application of the label to a device in a network. The service estimates, across a space of the device attributes, device densities of devices having device attributes at different points in that space. The service uses the estimated device densities to identify two or more of the device type classification rules as having overlapping device attributes. The service determines that the two or more device type classification rules are in conflict, based on the two or more rules having different device type labels. The service generates a rule conflict resolution that comprises one of the device type labels from the conflicting two or more device type classification rules.

    Preserving privacy in exporting device classification rules from on-premise systems

    公开(公告)号:US11153347B2

    公开(公告)日:2021-10-19

    申请号:US16424912

    申请日:2019-05-29

    Abstract: In one embodiment, a device in a network obtains data indicative of a device classification rule, a device type label associated with the rule, and a set of positive and negative feature vectors used to create the rule. The device replaces similar feature vectors in the set of positive and negative feature vectors with a single feature vector, to form a reduced set of feature vectors. The device applies differential privacy to the reduced set of feature vectors. The device sends a digest to a cloud service. The digest comprises the device classification rule, the device type label, and the reduced set of feature vectors to which differential privacy was applied. The service uses the digest to train a machine learning-based device classifier.

    Forecasting network KPIs
    26.
    发明授权

    公开(公告)号:US11063842B1

    公开(公告)日:2021-07-13

    申请号:US16740051

    申请日:2020-01-10

    Abstract: In one embodiment, a service receives input data from networking entities in a network. The input data comprises synchronous time series data, asynchronous event data, and an entity graph that that indicates relationships between the networking entities in the network. The service clusters the networking entities by type in a plurality of networking entity clusters. The service selects, based on a combination of the received input data, machine learning model data features. The service trains, using the selected machine learning model data features, a machine learning model to forecast a key performance indicator (KPI) for a particular one of the networking entity clusters.

    ANOMALY DETECTION OF MODEL PERFORMANCE IN AN MLOPS PLATFORM

    公开(公告)号:US20210184958A1

    公开(公告)日:2021-06-17

    申请号:US16710836

    申请日:2019-12-11

    Abstract: In one embodiment, a service tracks performance of a machine learning model over time. The machine learning model is used to monitor one or more computer networks based on data collected from the one or more computer networks. The service also tracks performance metrics associated with training of the machine learning model. The service determines that a degradation of the performance of the machine learning model is anomalous, based on the tracked performance of the machine learning model and performance metrics associated with training of the model. The service initiates a corrective measure for the degradation of the performance, in response to determining that the degradation of the performance is anomalous.

Patent Agency Ranking