Abstract:
A beverage dispensing system comprises a user interface system having a digital display, the user interface system configured to receive a beverage selection from a user, and a beverage dispenser having a plurality of beverage sources, the beverage dispenser operable to control a flow of beverage from one or more of the beverage sources in accordance with the beverage selection. A surface electroacoustic transducer is attached to a portion of the digital display or the beverage dispenser that, in response to receiving the beverage selection, conducts vibration into the portion of the digital display or the beverage dispenser to produce a sound from that portion.
Abstract:
Apparatuses, systems, and methods are for dispensing condiments, including a base condiment together with and at least one additive. In some examples, a dispenser apparatus comprises a dispenser body having an upstream inlet that is configured to receive the base condiment and a downstream outlet that is configured to dispense the base condiment together with the additive(s). An additive body is configured to supply the additive(s) into the dispenser body as the base condiment is conveyed from the upstream inlet to the downstream outlet so that the base condiment and the additive(s) are concurrently dispensed via the downstream outlet. The systems and methods can operatively include arrangements for selecting a base condiment; selecting one or more additives from a plurality of additives; and supplying the base condiment and the additive(s) to a dispenser apparatus that dispenses the base condiment and additive(s) together.
Abstract:
The present invention recognizes the need for an apparatus and method for creating carbonated beverages having a customizable carbonation level. The invention uses a CPU to control an inlet valve which connects a tank of pressurized carbon dioxide to a vessel containing the beverage to be carbonized. The tube connecting the tank of pressurized carbon dioxide to the vessel contains an orifice for reducing the carbon dioxide's flow rate, thereby increasing control over the amount of carbon dioxide introduced to the vessel. A motor agitates the vessel, causing the carbon dioxide to become absorbed in the beverage. During the pressurization process, the pressure inside the vessel is monitored by the CPU to determine whether more CO2 should be added to the vessel. An outlet valve causes excess pressure to drain from the vessel. An outlet orifice causes the pressure to release gradually, thus preventing the beverage from foaming.