Abstract:
Systems and methods that enable consistent navigation (for a database and memory environment) in object relational mapping. This typically ensures fidelity of object graph via restrictions on collections of persistent objects (e.g., entity sets, entity refs . . . ). Moreover, a tracking component can detect changes as they occur, and only a copy of the objects that have changed can be created, to optimize operation.
Abstract:
A system for converting a query from a representation in a first computing language to an equivalent query in a representation in a second computing language that is different from the first computing language, comprises a query module that accepts a query in an object-oriented representation for translation to an equivalent query in a target query language. The system also includes a translation module that uses the object-oriented representation of the query to create a first version of the query in an idealized version of a target query language and uses the first version of the query to create a second version of the query in an implemented version of the target query language. Methods of using the system are also provided.
Abstract:
A general-purpose programming language having language extensions for strongly typed, compile-time checked query and set operations that can be applied to arbitrary data structures, be they object-relational (O-R) mappings or just regular objects. As is appropriate for a general purpose programming language, the extensions do not mandate a particular object-relational layer; rather, they are introduced as abstractions that can be implemented in multiple environments. Accordingly, there is provided a system that facilitates data querying in accordance with an innovative aspect. The system include a program component that provides embedded query and set operations in a programming language, and an application component that facilitates application of the query and set operations over a data structure of data. The data can be any kind of data such as that found in a database, a document (e.g., XML), and data sources in a programming language (e.g., C#), for example.
Abstract:
The subject invention relates to systems and methods that provide null capabilities within the context of programming languages. In one aspect, a system is provided that facilitates null-support in various programming languages. The system includes one or more types associated with at least one programming language. A type modifier is provided to signal that the type is nullable. The type modifier enables a multi-element structure to be automatically created in association with the type wherein, the multi-element structure includes the type and a Boolean element indicating whether or not the variable is null.