Abstract:
A termite control bait container includes an upper end portion opposite a lower end portion. The bait container includes a chamber containing a termite bait. The lower end portion includes an air-trapping pocket below at least a portion of the bait to reduce intrusion of water through the lower end portion when installed in a selected orientation at least partially below ground.
Abstract:
A termite bait includes a plurality of cellulosic food material pieces palatable to termites embedded within a water resistant polyurethane foam matrix. Another termite bait includes a plurality of cellulosic food material pieces embedded within a water-absorbent polyurethane foam matrix. Yet another termite bait includes at least one cellulosic food material piece encapsulated within a water resistant polyurethane foam coating. Such termite baits can be used alone or in a monitoring device or other termite control device. Another termite control device includes a container, a cellulosic food material within the container and a water resistant polyurethane foam positioned to separate the food material from its environment. The container can contain a termite bait as described above or can include a chamber containing a cellulosic food material and at least one pocket containing a polyurethane foam barrier to reduce intrusion of water through the pocket to the food material.
Abstract:
A termite bait includes a plurality of cellulosic food material pieces palatable to termites embedded within a water resistant polyurethane foam matrix. Another termite bait includes a plurality of cellulosic food material pieces embedded within a water-absorbent polyurethane foam matrix. Yet another termite bait includes at least one cellulosic food material piece encapsulated within a water resistant polyurethane foam coating. Such termite baits can be used alone or in a monitoring device or other termite control device. Another termite control device includes a container, a cellulosic food material within the container and a water resistant polyurethane foam positioned to separate the food material from its environment. The container can contain a termite bait as described above or can include a chamber containing a cellulosic food material and at least one pocket containing a polyurethane foam barrier to reduce intrusion of water through the pocket to the food material.
Abstract:
A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence of a pest when the counter exceeds a predetermined limit.
Abstract:
A termite control bait container includes an upper end portion opposite a lower end portion. The bait container includes a chamber containing a termite bait. The lower end portion includes an air-trapping pocket below at least a portion of the bait to reduce intrusion of water through the lower end portion when installed in a selected orientation at least partially below ground.
Abstract:
A pest control device comprising a capacitive sensor array including a plurality of sensor pads, the capacitive sensor array being configured to generate an electrical output signal indicating the state of each sensor pad, and an electronic controller electrically connected to the capacitive sensor array, the electronic controller including a processor and a memory including a plurality of instructions, which, when executed by the processor, causes the processor to: receive the electrical output signals from the capacitive sensor array, determine a measured capacitance value for each sensor pad based on each electrical output signal, calculate a baseline for each sensor pad based on the measured capacitance value of the sensor pad, determine whether a difference between the measured capacitance value of at least one sensor pad and its corresponding baseline exceeds a first predetermined threshold, update a counter when the first predetermined threshold is exceeded, and record an event indicative of a presence of a pest when the counter exceeds a predetermined limit.
Abstract:
A termite control bait container includes an upper end portion opposite a lower end portion. The bait container includes a chamber containing a termite bait. The lower end portion includes an air-trapping pocket below at least a portion of the bait to reduce intrusion of water through the lower end portion when installed in a selected orientation at least partially below ground.
Abstract:
Vehicles for delivery and release of pesticide compositions are provided. In one aspect, the delivery vehicle is a capsule configured to resist release of a pesticide composition before application of the capsule at a locus where pest control is desired. The capsule is further configured to degrade following application at the locus where pest control is desired to facilitate release of the pesticide composition. In one particular but non-limiting form, the capsule includes a shell wall including a relatively high Bloom strength gelatin material and a plasticizer material, and the pesticide composition includes a fumigant such as 1,3-dichloropropene. Further embodiments, forms, objects, features, advantages, aspects, and benefits shall become apparent from the description and drawings.
Abstract:
A termite control bait container includes an upper end portion opposite a lower end portion. The bait container includes a chamber containing a termite bait. The lower end portion includes an air-trapping pocket below at least a portion of the bait to reduce intrusion of water through the lower end portion when installed in a selected orientation at least partially below ground.
Abstract:
Methods for fumigating soil include providing a fumigant including at least one volatile substance into or onto soil and applying over the soil a multilayer polymeric film to form a vapor barrier between the fumigant-treated soil and the atmosphere to at least partially contain the fumigant. The multilayer film includes at least one barrier layer comprising at least one vinylidene chloride polymer and protecting layers on each side of the barrier layer. The multilayer film preferably has at least one UV protecting layer and optionally at least one reflective layer.