摘要:
A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.
摘要:
A novel cancer scoring tool not only generates a score, but it also generates and confidence number. The tool receives a digital image of tissue of a patient. The tool identifies cell objects in the image and from that determines a first score. The magnitude of this first score is indicative of the severity of cancer in the tissue of the patient. The tool uses an overall false negative rate value and an overall false positive rate value to generate a set of second scores. The rate values are determined from training information. From the second scores, the tool determines the confidence number. The confidence number indicates the confidence the tool has in the first score being correct. The first score and an indication of the confidence number and the digital image are all displayed together on the display of the tool.
摘要:
An analysis and visualization system analyzes a digital image of a tissue sample. In the sample, cells of a first type are stained in a first way, and cells of a second type are stained in a second way. The system segments the high-resolution image into first and second objects representing cells of the first and second types, respectively. The system also identifies a region of interest, and divides it into tiles. The system generates, for each tile, a first value and a second value. The first and second values for a tile are indicative of densities of the first and second objects in the tile. From the values, a measured correlation coefficient (CC) value is determined. The system compares the measured CC value to a reference CC value, thereby obtaining a correspondence value. The system then displays the image region along with a visualization of the correspondence value.
摘要:
Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.
摘要:
A method for coregistering images involves defining middle paths through image objects depicting tissue slices of needle biopsies. First landmarks are defined on a first middle path through a first image object in a first digital image of a first tissue slice, and second landmarks are defined on a second middle path through a second image object of a second digital image of a second tissue slice. Individual first landmarks are associated with individual second landmarks. A first pixel in the first object is coregistered with a second pixel in the second object using multiple first and second landmarks. The first image is displayed in a first frame on a graphical user interface, and the second image is displayed in a second frame such that the first pixel is centered in the first frame, the second pixel is centered in the second frame, and the images have the same orientations.
摘要:
A method for generating an image-based test improves diagnostic accuracy by iteratively modifying rule sets governing image and data analysis of coregistered image tiles. Digital images of stained tissue slices are divided into tiles, and tiles from different images are coregistered. First image objects are linked to selected pixels of the tiles. First numerical data is generated by measuring the first objects. Each pixel of a heat map aggregates first numerical data from coregistered tiles. Second objects are linked to selected pixels of the heat map. Measuring the second objects generates second numerical data. The method improves how well second numerical data correlates with clinical data of the patient whose tissue is analyzed by modifying the rule sets used to generate the first and second objects and the first and second numerical data. The test is defined by those rule sets that produce the best correlation with the clinical data.
摘要:
An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.