Evaluation of co-registered images of differently stained tissue slices

    公开(公告)号:US10262189B2

    公开(公告)日:2019-04-16

    申请号:US15674695

    申请日:2017-08-11

    申请人: Definiens AG

    IPC分类号: G06K9/00 G06T17/00 G06T7/33

    摘要: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.

    Learning Pixel Visual Context from Object Characteristics to Generate Rich Semantic Images
    24.
    发明申请
    Learning Pixel Visual Context from Object Characteristics to Generate Rich Semantic Images 有权
    从对象特征学习像素视觉上下文以产生丰富的语义图像

    公开(公告)号:US20160063308A1

    公开(公告)日:2016-03-03

    申请号:US14473096

    申请日:2014-08-29

    申请人: Definiens AG

    摘要: Both object-oriented analysis and the faster pixel-oriented analysis are used to recognize patterns in an image of stained tissue. Object-oriented image analysis is used to segment a small portion of the image into object classes. Then the object class to which each pixel in the remainder of the image most probably belongs is determined using decision trees with pixelwise descriptors. The pixels in the remaining image are assigned object classes without segmenting the remainder of the image into objects. After the small portion is segmented into object classes, characteristics of object classes are determined. The pixelwise descriptors describe which pixels are associated with particular object classes by matching the characteristics of object classes to the comparison between pixels at predetermined offsets. A pixel heat map is generated by giving each pixel the color assigned to the object class that the pixelwise descriptors indicate is most probably associated with that pixel.

    摘要翻译: 面向对象分析和更快的像素导向分析都用于识别染色组织图像中的图案。 面向对象的图像分析用于将图像的一小部分分割成对象类。 然后使用具有像素描述符的决策树来确定图像剩余部分中最可能属于哪个像素的对象类。 剩余图像中的像素被分配对象类,而不将图像的其余部分分割成对象。 在将小部分分割成对象类之后,确定对象类的特征。 像素描述符通过将对象类的特征与预定偏移的像素之间的比较相匹配来描述哪些像素与特定对象类相关联。 通过给每个像素分配给对象类的颜色生成像素热图,像素描述符指示的颜色最可能与该像素相关联。

    Coregistering Images of Needle Biopsies Using Multiple Weighted Landmarks
    25.
    发明申请
    Coregistering Images of Needle Biopsies Using Multiple Weighted Landmarks 有权
    使用多重加权地标的针活检的核心图像

    公开(公告)号:US20140228707A1

    公开(公告)日:2014-08-14

    申请号:US13764539

    申请日:2013-02-11

    申请人: DEFINIENS AG

    IPC分类号: A61B5/00 A61B10/02

    摘要: A method for coregistering images involves defining middle paths through image objects depicting tissue slices of needle biopsies. First landmarks are defined on a first middle path through a first image object in a first digital image of a first tissue slice, and second landmarks are defined on a second middle path through a second image object of a second digital image of a second tissue slice. Individual first landmarks are associated with individual second landmarks. A first pixel in the first object is coregistered with a second pixel in the second object using multiple first and second landmarks. The first image is displayed in a first frame on a graphical user interface, and the second image is displayed in a second frame such that the first pixel is centered in the first frame, the second pixel is centered in the second frame, and the images have the same orientations.

    摘要翻译: 用于核心图像的方法涉及通过描绘针活组织切片的图像对象来定义中间路径。 第一标记被定义在通过第一组织切片的第一数字图像中的第一图像对象的第一中间路径上,并且第二界标被定义在通过第二组织切片的第二数字图像的第二图像对象的第二中间路径上 。 个别第一地标与个别第二地标有关。 使用多个第一和第二标记,第一对象中的第一个像素与第二个对象中的第二个像素核心对齐。 第一图像被显示在图形用户界面上的第一帧中,并且第二图像被显示在第二帧中,使得第一像素在第一帧中居中,第二像素在第二帧中心,并且图像 具有相同的方向。

    Generating Image-Based Diagnostic Tests By Optimizing Image Analysis and Data Mining Of Co-Registered Images
    26.
    发明申请
    Generating Image-Based Diagnostic Tests By Optimizing Image Analysis and Data Mining Of Co-Registered Images 有权
    通过优化图像分析和共同注册图像的数据挖掘生成基于图像的诊断测试

    公开(公告)号:US20140185891A1

    公开(公告)日:2014-07-03

    申请号:US14197197

    申请日:2014-03-04

    申请人: Definiens AG

    IPC分类号: G06T7/00

    摘要: A method for generating an image-based test improves diagnostic accuracy by iteratively modifying rule sets governing image and data analysis of coregistered image tiles. Digital images of stained tissue slices are divided into tiles, and tiles from different images are coregistered. First image objects are linked to selected pixels of the tiles. First numerical data is generated by measuring the first objects. Each pixel of a heat map aggregates first numerical data from coregistered tiles. Second objects are linked to selected pixels of the heat map. Measuring the second objects generates second numerical data. The method improves how well second numerical data correlates with clinical data of the patient whose tissue is analyzed by modifying the rule sets used to generate the first and second objects and the first and second numerical data. The test is defined by those rule sets that produce the best correlation with the clinical data.

    摘要翻译: 用于生成基于图像的测试的方法通过迭代地修改控制核心图像块的图像和数据分析的规则集来提高诊断精度。 染色的组织切片的数字图像被分割成瓦片,并且来自不同图像的瓦片是核心的。 第一个图像对象链接到图块的所选像素。 通过测量第一个对象来生成第一个数字数据。 热图的每个像素聚集来自核心层的瓦片的第一数值数据。 第二个对象与热图的选定像素相关联。 测量第二个物体产生第二数值数据。 该方法改善了第二数值数据与通过修改用于生成第一和第二对象的规则集以及第一和第二数值数据来分析组织的患者的临床数据相关的程度。 测试由与临床数据产生最佳相关性的那些规则集定义。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    27.
    发明授权
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US08542899B2

    公开(公告)日:2013-09-24

    申请号:US13776853

    申请日:2013-02-26

    申请人: Definiens AG

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。