Abstract:
A photogrammetry system and method is provided. The system includes a two-dimensional (2D) camera operable to acquire a 2D image and a 2D video image. A user interface is provided having a display. A controller having a processor that performs a method for determining locations where photogrammetry images should be acquired and displaying an indicator on the user interface indicating to the operator a direction of movement to acquire the next photogrammetry image.
Abstract:
A triangulation scanner includes a projector, a camera, and a processor, the projector projecting a first pattern of light on a first point during first intervals and a no light during second intervals, the camera including an optical detector, a first accumulator, and a second accumulator, the optical detector receiving reflected light from the first point, the first and second accumulators summing signals from the optical detector during the first and second intervals, respectively, the processor determining 3D coordinates of the first point based at least in part on the first pattern, the summed signals from the first and second accumulators, and a speed of light in air.
Abstract:
A three-dimensional (3D) forensic evidence system is provided. The system includes a noncontact measurement device operable to measure a distance from the device to a surface. A first camera is operably coupled to the noncontact measurement device, the first camera having a field of view. A light source is operably coupled to the first camera and operable to emit light onto the surface within the field of view. A processor operably is coupled to the first camera, the processor operable to execute computer instructions when executed on the processor for determining 3D coordinates of at least one point in the field of view based at least in part on the distance, and assigning at least one color value to the at least one point in response to determining an interaction of a predefined wavelength of light with a substance in the field of view.
Abstract:
A system includes a measurement device configured to measure a distance, a first angle, and a second angle to a retroreflector target. The system further includes a probe having the retroreflector target, an inclinometer sensor, a camera, and a processor, the inclinometer sensor configured to determine a two-dimensional inclination of the probe relative to a gravity vector, the camera configured to capture an image of a light emitted from or reflected by the measurement device, the processor configured to determine six degrees of freedom of the probe based at least in part on the distance, the first angle, the second angle, the two-dimensional inclination, and the captured image of the camera.
Abstract:
A method for calibration of a system for tracking a measurement system is provided. The method includes recording a path of relative poses that the system is in when acquiring three-dimensional (3D) coordinates of an object by a measurement system. The recording the path includes moving the system sequentially through relative poses between a measurement system and an object, at which the measurement system measures the 3D coordinates and the pose tracking system records a relative pose. The pose manipulation system is caused to move sequentially along the poses in the path, and the measurement system measures the 3D coordinates and applying the recorded poses. The relative pose is calibrated between the tracked manipulated coordinate system and one of a coordinate system of the object and the measurement system. The measured positions are transformed based on the calibrated relative pose and the tracked relative pose into the common coordinate system.
Abstract:
A system includes a pose manipulation system operationally that sets a pose of a position measurement system with respect to an object that is to be measured. The system further includes a pose tracking system configured to record a relative pose between a coordinate system associated with the position measurement system and a coordinate system of the object. The pose tracking system records a path along which the position measurement system is enabled to measure 3D coordinates of a surface of a type of an object, wherein recording the path comprises moving the pose manipulation system sequentially through a plurality of poses and recording, at each pose, the relative pose to measure the 3D coordinates. The pose manipulation system follows the path again, and the position measurement system measures the 3D coordinates by applying one or more of the recorded poses.
Abstract:
A system and method for scanning an environment and generating an annotated 2D map is provided. The system includes a 2D scanner having a light source, an image sensor and a first controller. The first controller determines a distance value to at least one of the object points. The system further includes a 360° camera having a movable platform, and a second controller that merges the images acquired by the cameras to generate an image having a 360° view in a horizontal plane. The system also includes processors coupled to the 2D scanner and the 360° camera. The processors are responsive to generate a 2D map of the environment based at least in part on a signal from an operator and the distance value. The processors being further responsive for acquiring a 360° image and integrating it at a location on the 2D map.
Abstract:
According to one aspect of the disclosure, a three-dimensional coordinate scanner is provided. The scanner includes a projector configured to emit a pattern of light; a sensor arranged in a fixed predetermined relationship to the projector, the sensor having a photosensitive array comprised of a plurality of event-based pixels, each of the event-based pixels being configured to transmit a signal in response to a change in irradiance exceeding a threshold. One or more processors are electrically coupled to the projector and the sensor, the one or more processors being configured to modulate the pattern of light and determine a three-dimensional coordinate of a surface based at least in part on the pattern of light and the signal.
Abstract:
A system and method for scanning an environment and generating an annotated 2D map is provided. The system includes a 2D scanner having a light source, an image sensor and a first controller. The first controller determines a distance value to at least one of the object points. The system further includes a 360° camera having a movable platform, and a second controller that merges the images acquired by the cameras to generate an image having a 360° view in a horizontal plane. The system also includes processors coupled to the 2D scanner and the 360° camera. The processors are responsive to generate a 2D map of the environment based at least in part on a signal from an operator and the distance value. The processors being further responsive for acquiring a 360° image and integrating it at a location on the 2D map.
Abstract:
A three-dimensional (3D) measuring device may include a spherical laser scanner (SLS) structured to generate a 3D point cloud of an area; a plurality of cameras, each camera of the plurality of cameras being structured to capture a color photographic image; a controller operably coupled to the SLS and the camera; and a base on which the SLS is mounted. The controller may include a processor and a memory. The controller may be configured to add color data to the 3D point cloud based on the color photographic images captured by the plurality of cameras. The plurality of cameras may be provided on the base and spaced apart in a circumferential direction around a pan axis of the SLS. The plurality of cameras may be fixed relative to the pan axis.