Abstract:
The medical information display apparatus includes a first data acquisition unit that acquires a table showing relevance between at least one item included in clinical diagnostic information on dementia and a brain area, a second data acquisition unit that acquires clinical diagnostic information on dementia of a subject, an image acquisition unit that receives an input of a three-dimensional brain image, a brain area division unit that divides the three-dimensional brain image of the subject, an image analysis unit that calculates an analysis value for each brain area, an operation unit that selects one item among items included in the clinical diagnostic information of the subject, a display unit, and a display controller that specifies a brain area corresponding to the one item selected by the operation unit and displays brain area specifying information for specifying the specified brain area and an analysis value of the brain area.
Abstract:
A medical image processing apparatus, having a processor configured to divide brains included in a brain image and a standard brain image into a plurality of regions corresponding to each other, calculate a first correction amount between the pixel value of a first reference pixel included in each of the plurality of region in the brain image and the pixel value of a second reference pixel and a second correction amount for matching first other pixel values other than the first reference pixel included in each of the plurality of regions in the brain image with pixel values of second other pixels, and correct the brain image based on the first correction amount and the second correction amount.
Abstract:
A first 3D image and a second 3D image imaged a target organ in different phases of respiration are acquired. A 3D deformation model of the target organ which is stored in advance and represents nonlinear 3D deformation of the target organ due to respiration, and which has been generated based on information about movement of the target organ due to respiration of plural patients, is read. The positions of pixels on the second 3D image representing the same positions on the target organ as plural sampled pixels in a target organ region on the first 3D image are estimated using displacement due to changes in phase of points on the 3D deformation model corresponding to the positions on the target organ represented by the pixels. Non-rigid alignment is performed between the first 3D image and the second 3D image using the estimated positions of the pixels.
Abstract:
A three-dimensional common coordinate system is defined and a first correspondence relationship between each pixel of a first three-dimensional image which has at least a portion of a human body as a subject and coordinates on the common coordinate system is set. A second three-dimensional image which has at least a portion of the human body as a subject that at least partially overlaps the subject in the first three-dimensional image is aligned with the first three-dimensional image to calculate a correspondence relationship between pixels of the first three-dimensional image and the second three-dimensional image. A second correspondence relationship between each pixel of the second three-dimensional image and coordinates on the common coordinate system is calculated on the basis of the calculated correspondence relationship and the set first correspondence relationship. The first correspondence relationship and the second correspondence relationship are stored.
Abstract:
An intervertebral foramen position detection unit detects positions of intervertebral foramens in a three-dimensional medical image including plural vertebrae. In this case, for example, a feature value representing a likelihood of an intervertebral foramen is used. A vertebra identification unit identifies each of the plural vertebrae by using the detected positions of the intervertebral foramens, respectively.
Abstract:
Generating, with respect to each of the three-dimensional image and the three-dimensional comparison image, a plurality of tomographic images orthogonal to a central axis of each vertebra of the subject along the central axis, calculating a first characteristic amount representing a profile in a direction orthogonal to the central axis at each point on the central axis based on the tomographic images, calculating a second characteristic amount representing a profile in a direction of the central axis at each point on the central axis based on the tomographic images, calculating a third characteristic amount representing regularity of disposition of each vertebra at each point on the central axis based on the calculated first and second characteristic amounts, and aligning positions of the third characteristic amount calculated from the three-dimensional image and the third characteristic amount calculated from the three-dimensional comparison image along the central axis.