Abstract:
An imaging lens substantially consists of, in order from an object side, five lenses of a first lens that has a positive refractive power and has a meniscus shape which is concave toward an image side, a second lens that has a negative refractive power and has a meniscus shape which is concave toward the image side, a third lens that has a negative refractive power and is concave toward the object side, a fourth lens that has a positive refractive power and has a meniscus shape which is convex toward the image side, and a fifth lens that has a biconcave shape and has an aspheric shape which has at least one extreme point on an image side surface. Further, the imaging lens satisfies predetermined conditional expressions.
Abstract:
A zoom lens includes: a first lens group having a negative refractive power; and a second lens group having a positive refractive power, provided in this order from an object side. Magnification is changed by moving the first lens group and the second lens group. The first lens group includes a first lens having a negative refractive power, a second lens, a third lens having a negative refractive power, and a fourth lens having a positive refractive power, provided in this order from the object side. The zoom lens satisfies predetermined conditional formulae.
Abstract:
An imaging lens substantially includes six lenses, constituted by: a first lens having a positive refractive power and a convex surface that faces an object side; a second lens having a negative refractive power; a third lens having a positive refractive power; a fourth lens having a positive refractive power; a fifth lens having a negative refractive power and a concave surface that faces the object side; and an aspherical sixth lens having a negative refractive power, the surface of which is concave toward an image side in the vicinity of an optical axis and convex toward the image side at the peripheral portion thereof. The imaging lens satisfies a predetermined conditional formula.
Abstract:
A zoom lens includes a positive first lens group, a negative second lens group, a positive third lens group, and a subsequent group consisting of plural lens groups in order from an object side. In a case of zooming, an interval with an adjacent lens group is changed. The third lens group includes two uncemented positive lenses consecutively arranged in order from a side closest to the object side to an image side. A lens group closest to the image side in the subsequent group consists of a negative meniscus lens having a concave surface toward the object side and a positive lens having a convex surface toward the object side in order from the object side to the image side.
Abstract:
A finder display unit displays a live view image based on a captured image generated by an imaging unit. A digital signal processing unit detects a movement vector between frames in the live view image for a predetermined portion in the captured image. A digital signal processing unit changes a display range of the live view image on the finder display unit based on the detected movement vector of a peripheral portion in the captured image.
Abstract:
A variable magnification optical system consists of, in order from an object side, a first optical system remaining stationary during changing magnification and a second optical system including a plurality of lens groups moving during changing magnification. The first optical system includes a first mirror and a second mirror having reflective surfaces arranged to face each other. The first mirror has a reflective surface concave toward the object side. The second mirror has a reflective surface convex toward the image side. An intermediate image is formed between the second mirror and the second optical system. Predetermined conditional expressions relating to the partial dispersion ratios of the lenses included in the second optical system are satisfied.
Abstract:
The imaging lens includes a first lens group fixed during focusing and a positive second lens group moving to an object side during focusing from a long-distance object to a short-distance object, in order from a side closest to the object. The field curvature is adjusted by moving the first lens group or a sub-lens group within the first lens group including a lens closest to the object side, as an adjustment group. A stop fixed during the adjustment of the field curvature is disposed closer to an image side than the adjustment group. Conditional expressions relating to the focal length of the whole system, the focal length of the adjustment group, and the height of a paraxial on-axis light ray in the adjustment group are satisfied.
Abstract:
An imaging lens includes, in order from the object side, a first lens group fixed during focusing, a positive second lens group moved toward the object side during focusing from a distant to a close object, and a third lens group fixed during focusing and including one positive lens. The second group includes, in order from the object side, a first cemented lens including a biconvex lens and a negative lens having a smaller absolute value of curvature radius of the object-side surface than of the image-side surface, and a second cemented lens having a positive refractive power and including a negative lens having a smaller absolute value of curvature radius of the image-side surface than of the object-side surface and a positive lens having a smaller absolute value of curvature radius of the object-side surface than of the image-side surface. The imaging lens satisfies specific condition expressions.
Abstract:
An imaging lens consists of three lenses of, in order from an object side, a first lens having a biconcave shape, and an object-side surface of which is aspherical, a second lens having negative refractive power and a third lens having positive refractive power with a convex surface facing an image side. The absolute value of a curvature radius of an image-side surface of the third lens is less than the absolute value of a curvature radius of an object-side surface of the third lens.
Abstract:
A zoom lens consists of, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, a fifth lens group having a positive refractive power, and a sixth lens group having a positive refractive power, wherein magnification change is effected by changing all distances between adjacent lens groups. The second lens group is moved from the object side toward the image side during magnification change from the wide-angle end to the telephoto end. The position of the third lens group at the telephoto end is nearer to the image side than the position of the third lens group at the wide-angle end.