Abstract:
A motor suspension assembly includes a frame bracket configured to be coupled with a vehicle frame having mounting locations for upper and lower suspension bars that are positioned for a direct current (DC) traction motor to rest upon the upper suspension bar and for elastic pads to be disposed between the upper and lower suspension bars. The frame bracket is configured to be coupled with the vehicle frame in place of at least one of the upper suspension bar or the lower suspension bar. The assembly also includes a dog bone suspension link configured to be coupled with a nose bracket of an alternating current (AC) traction motor and the frame bracket. The dog bone suspension link is configured to absorb vibration by at least partially rotating about one or more of the nose bracket or the frame bracket during operation of the AC traction motor.
Abstract:
A sensor system senses one or more characteristics of vehicles in a vehicle system with sensors disposed onboard the vehicles and communicate data representative of the one or more characteristics from the sensors to one or more of a controller or a control system of the vehicle system. The data communicated from the sensors onboard the same vehicle can be synchronously communicated with respect to the sensors onboard the same vehicle and asynchronously communicated with respect to the sensors disposed onboard one or more other vehicles in the vehicle system. The systems and methods can direct components disposed onboard a vehicle system to change operations, monitor data output by sensors operatively connected with the components, and determine which of the sensors are operatively connected with which of the components based on the operations of the components that are changed and the data that is output by the sensors.
Abstract:
A system includes a sensor configured to be disposed within a reservoir of a machine having moving parts that are lubricated by a liquid in the reservoir. The sensor is configured to obtain a measurement of the liquid that is representative of at least one of a quantity or quality of the liquid in the reservoir. The system also includes a device body operably coupled to the sensor. The device body has a processing unit that is operably coupled to the sensor and configured to generate first data signals representative of the measurement of the liquid. The device body also includes a transmitter that is configured to wirelessly communicate the first data signals to a remote reader.
Abstract:
A system includes a sensor, one or more processors, a transmitter, and a capacitance control structure. The sensor is configured to contact a fluid and measure a characteristic of the fluid. The one or more processors are operably coupled to the sensor. The one or more processors are configured to generate one or more data signals representative of the characteristic of the fluid that is measured by the sensor. The transmitter is operably coupled to the one or more processors. The transmitter is configured to wirelessly communicate the one or more data signals to a remote reader. The capacitance control structure is configured to one or more of reduce or isolate sensor capacitance of the sensor from the one or more processors.