Abstract:
A method includes combusting a fuel and an oxidant in a combustor of an exhaust gas recirculation (EGR) gas turbine system that produces electrical power and provides a portion of the electrical power to an electrical grid. The method further includes controlling, via one or more processors, one or more parameters of the EGR gas turbine system to decrease the portion of the electrical power provided to the electrical grid in response to an over-frequency event associated with the electrical grid, wherein controlling the one or more parameters comprises decreasing a flow rate of fuel to the combustor in response to the over-frequency event.
Abstract:
A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode.