Abstract:
A power generation system includes a power generation plant portion including a feedwater heating system configured to channel a feedwater stream and a carbon dioxide capture portion coupled in flow communication with the power generation plant portion. The carbon dioxide capture portion includes a solvent circuit configured to channel a solvent stream through at least a portion of the carbon dioxide capture portion. The carbon dioxide capture portion also includes a heat recovery system coupled in flow communication with the solvent circuit and the feedwater heating system. The heat recovery system is configured to transfer heat energy from the solvent stream to the feedwater stream and to channel the heated feedwater from the heat recovery system to the feedwater heating system.
Abstract:
An assembly for use in a fuel injection system within a combustor of a combustion turbine engine is described. The assembly may include: a first port formed through an outer radial wall of the combustor and a second port formed through an inner radial wall. A plenum may be formed about the first port. A tube may be formed that has a first end positioned within the first port and a second end positioned within the second port. At the first end, the tube may be sized smaller than the first port such that two passages are defined therethrough: a first passage defined about an exterior of the tube; and a second passage defined through an interior of the tube.
Abstract:
A turbomachine including a combustor in which fuel is combustible to produce a working fluid, a turbine section, which is receptive of the working fluid for power generation operations, a transition piece in which additional fuel is combustible, the transition piece being disposed to transport the working fluid from the combustor to the turbine section and a staged combustion system coupled to the combustor and the transition piece. The staged combustion system is configured to blend components of the fuel and the additional fuel in multiple modes.
Abstract:
A turbomachine including a combustor in which fuel is combustible to produce a working fluid, a turbine section, which is receptive of the working fluid for power generation operations, a transition piece in which additional fuel is combustible, the transition piece being disposed to transport the working fluid from the combustor to the turbine section and a staged combustion system coupled to the combustor and the transition piece. The staged combustion system is configured to blend components of the fuel and the additional fuel in multiple modes.
Abstract:
The present application provides a micro-mixer combustion nozzle for mixing a flow of fuel and a flow of air in a gas turbine engine. The micro-mixer combustion nozzle may include a fuel plate with a number of fuel plate apertures and a fuel plate passage in communication with the flow of fuel and an air plate with a number of air plate apertures and an air plate passage in communication with the flow of air. The fuel plate passage and the air plate passage may align to mix in part the flow of fuel and the flow of air.
Abstract:
An aft frame assembly for a gas turbine transition piece includes a main body having an upstream facing surface and a downstream facing surface. A plurality of feed hole inlets are located on the upstream facing surface. The feed hole inlets are coupled to a plurality of cooling channels that pass through the main body towards the downstream facing surface. A plurality of plenums are located in or near the downstream facing surface, and each cooling channel is connected to and terminates in one of the plenums. The cooling channels are inputs to the plenums. A plurality of microchannel cooling slots are formed in or near the downstream facing surface, and each microchannel cooling slot is connected to one of the plenums. The microchannel cooling slots are outputs of the plenums. Two or more cooling channels and two or more microchannel cooling slots are connected to one of the plenums.
Abstract:
A fuel injector is provided for the radial introduction of a liquid fuel/air mixture to a combustor. The fuel injector includes a body having a frame that defines an inlet portion and an outlet member that defines an outlet portion. A fuel plenum is defined within the outlet member, and a fuel injection port, which communicates with the fuel plenum, is defined through the outlet member. A fuel supply conduit, fixed to the body, communicates between a source of liquid fuel and the fuel injection port, via the fuel plenum. Alternately, the fuel injector may include a swirl-inducing device mounted to the outlet member in communication with the fuel injection port, and a fuel supply conduit fixed to the swirl-inducing device. In this embodiment, the fuel supply conduit communicates between the fuel injection port and a source of a liquid fuel and water mixture, via the swirl-inducing device.
Abstract:
A fuel nozzle system for enabling a gas turbine to start and operate on low-Btu fuel includes a primary tip having primary fuel orifices and a primary fuel passage in fluid communication with the primary fuel orifices, and a fuel circuit capable of controlling flow rates of a first and second low-Btu fuel gases flowing into the fuel nozzle. The system is capable of operating at an ignition status, in which at least the first low-Btu fuel gas is fed to the primary fuel orifices and ignited to start the gas turbine, and a baseload status, in which at least the second low-Btu fuel gas is fired at baseload. The low-Btu fuel gas ignited at the ignition status has a content of the first low-Btu fuel gas higher than that of the low-Btu fuel gas fired at the baseload status. Methods for using the system are also provided.
Abstract:
A method of forming a plurality of turbulators on a turbomachine surface includes depositing a portion of material on the turbomachine surface forming a first portion of the plurality of turbulators, adding additional material to the first portion, and establishing a desired dimension of the plurality of turbulators.
Abstract:
A hot gas path duct or unibody liner for a gas turbine includes a main body having a forward end and an aft end. The main body defines a cross-sectional flow area and an axial flow length that extends between the forward end and the aft end. The main body further defines a fuel injection portion disposed downstream from the forward end and upstream from the aft end. The cross-sectional flow area decreases along the axial flow length between the forward end and the fuel injection portion and increases along at least a portion of the axial flow length downstream from the fuel injection portion.