Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and the control circuit is configured to automatically transmit an activation signal formatted to control the remote device in response to identifying the remote device.
Abstract:
An imaging system is provided herein. An image sensor is configured to acquire one or more images of a scene external and forward of a controlled vehicle and to generate image data corresponding to the acquired images. A controller is communicatively connected to the image sensor and is configured to receive and analyze the image data. The controller detects an object of interest in the image data and generates an ON signal or an OFF signal based on the detection of the object of interest in the image data, or lack thereof. A high beam control of the vehicle is turned ON based on the ON signal or turned OFF based on the OFF signal. The controller modifies a future response time at which the OFF signal is generated based on an external overriding of the ON signal or the OFF signal.
Abstract:
A trainable transceiver for installation in a vehicle and for controlling a remote device includes a transceiver circuit configured based on training information to communicate with the remote device, a communications device configured to communicate with a mobile communications device, and a control circuit coupled to the transceiver circuit, and coupled to the communications device. The control circuit is configured to transmit diagnostic information related to the trainable transceiver to a mobile communications device via the communications device.
Abstract:
An imaging system is provided herein. An image sensor is configured to acquire one or more images of a scene external and forward of a controlled vehicle and to generate image data corresponding to the acquired images. A controller is communicatively connected to the image sensor and is configured to receive and analyze the image data. The controller detects an object of interest in the image data and generates an ON signal or an OFF signal based on the detection of the object of interest in the image data, or lack thereof. A high beam control of the vehicle is turned ON based on the ON signal or turned OFF based on the OFF signal. The controller modifies a future response time at which the OFF signal is generated based on an external overriding of the ON signal or the OFF signal.
Abstract:
A trainable transceiver for controlling a remote device includes a transceiver circuit configured, based on training information, to control the remote device, a communications device configured to communicate with a mobile communications device, an output device, and a control circuit coupled to the transceiver circuit, coupled to the communications device, and coupled to the output device. The control circuit is configured to receive notification information from the mobile communications device via the communications device, and wherein the control circuit is configured to generate an output using the output device based on the notification information.
Abstract:
An accessory configured to authenticate a transaction is disclosed. The accessory comprises a communication circuit configured to communicate with a transaction system. The accessory further comprises at least one data collection device and a processor. The processor is in communication with the communication circuit and the data collection device. The processor is configured to compare captured data captured by the data collection device with stored data to generate an authentication of a previously identified operator.
Abstract:
A display system for a vehicle is disclosed. The display system comprises a display device disposed in a passenger compartment of the vehicle. The display device comprises a screen and at least one sensor. The display system further comprises a controller in communication with the display device and an imager configured to capture image data in a field of view. The controller is operable adjust at least one of a position and a scale of a desired view of the image data for display on the screen in response to an input received by the at least one sensor.
Abstract:
A system for installation in a vehicle and for controlling a remote device includes a camera, a trainable transceiver, and a control circuit coupled to the camera and the trainable transceiver. The control circuit is configured to use geographic location information to determine when to initiate a process of using the camera to identify the remote device and transmit an activation signal formatted to control the remote device. Upon initiation of the process, the control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and wherein the control circuit is configured to automatically transmit an activation signal formatted to control the remote device, using the trainable transceiver, in response to identifying the remote device.
Abstract:
A system for installation in a vehicle and for controlling a remote device including a trainable transceiver, a camera, and a control circuit coupled to the trainable transceiver and the camera. The control circuit is configured to use the camera to identify the remote device by comparing information received via the camera to information stored in memory, and the control circuit is configured to automatically transmit an activation signal formatted to control the remote device in response to identifying the remote device.