Abstract:
One variation may include a product comprising a piston oil squirting system comprising at least one piston oil squirter operatively communicating with at least one engine oil channel and which is constructed and arranged to squirt oil at at least one piston; and at least one mechanism which is constructed and arranged to control a flow rate and a timing of at least one oil jet stream from the at least one piston oil squirter so that the oil jet stream flows at single or multiple intervals from a zero to a maximum flow rate within an engine cycle or a crankshaft revolution.
Abstract:
A system includes a first scavenge oil pump that draws oil from a first draw location within a vehicle according to a first variable displacement associated with the first scavenge oil pump. The first variable displacement is based on a first modified scavenge ratio assigned to the first scavenge oil pump. An oil pump control module determines a first scavenge ratio, determines a first scavenge ratio multiplier based on at least one of vehicle acceleration and vehicle orientation, and applies the first scavenge ratio multiplier to the first scavenge ratio to generate the first modified scavenge ratio.
Abstract:
A vehicle and a method of reducing sound produced by a liquid fluid pump are disclosed. A pump is activated when a predetermined event is detected. A control valve of the pump is operated in one of an initial and a standard mode when the pump is activated. The control valve is operable to allow a gaseous fluid to vent out of the pump when in the initial mode corresponding to the pump being in a first phase. The control valve is operable to allow a liquid fluid to move through the pump when in the standard mode corresponding to the pump being in a second phase. A solenoid of the control valve is energized and de-energized, at a calibrated frequency, in a sequence when in the initial mode to reduce the sound in the pump during the initial mode.