Abstract:
A variable displacement vane pump includes a housing, an expandable vane control ring, a rotor, a plurality of vanes, slider ring, and biasing means. The expandable vane control ring defines a gap. The plurality of vanes may be slidably disposed in the rotor. The slider ring is pivotally affixed to the housing via a pivot. The slider ring may form a plurality of pumping chambers with the expandable vane control ring, the rotor and the vanes. The distal end of each vane in the plurality of vanes is configured to abut and slide along an inner surface of the slider ring while the rotor rotates and the expandable vane control ring is configured to temporarily contract when intermittent friction is experienced between the inner surface and any vane in the plurality of vanes—so that the plurality of vanes continuously slide along an inner surface of the slider ring.
Abstract:
A packaged vacuum pump and oil pump for use in a vehicle generally includes an oil pump module and a vacuum pump module. The oil pump module is configured to circulate oil, and is fitted to a first drive shaft configured to transmit torque to the oil pump module. The vacuum pump module is configured to generate a vacuum, and is fitted to a second drive shaft configured to transmit torque to the vacuum pump module. The packaged vacuum pump and oil pump also includes a clutch. The clutch connects the first drive shaft and the second drive shaft, and is configured to transfer torque from the first drive shaft to the second drive shaft when the clutch is engaged. The clutch may be a hydraulic clutch configured to receive a pressurized fluid, which may be oil received from the oil pump module, to engage the clutch.
Abstract:
A number of variations disclosed may include a product which may include a casting having a surface defining a main bearing feed groove and a surface defining at least one oil feed groove, the surface defining the main bearing feed groove and surface defining the at least one oil feed groove intersecting without any sharp corners or edges so that a smooth flow path is defined through the main bearing feed groove and into the at least one oil feed groove.
Abstract:
Variable displacement pumps and biasing assemblies for the same are disclosed. Example pumps may include a housing having an inlet and an outlet, and a rotor fixed for rotation with a shaft, with the shaft rotatably mounted within the housing. The pump may further include a plurality of radially extending vanes slidably disposed in the rotor, and a pivotable ring member defining a control chamber about the rotor, with the ring member being pivotable within the housing to vary an eccentricity of the ring member with respect to the rotor. The pump may further include a biasing assembly applying a biasing force to the ring member in a first direction about the shaft, with the biasing assembly including at least one resilient element extending longitudinally along a stand, and a sliding support slidably disposed on the stand and laterally supporting the resilient element with respect to the stand.
Abstract:
A method and system of diagnosing a lubrication system of an engine includes determining a lubrication system fault and controlling an engine in response to the fault. The method is operative to first determine a poor state of health for a lubrication system, then determine an oil degradation or lube system fault. In response to a lube system fault, engine operation is altered in order to reduce the negative effects of the lube system fault such as increasing minimum idle speed in response to reduced oil pressure.
Abstract:
A gerotor assembly is provided which includes a crankshaft, an inner drive gear, an outer driven gear and a housing defining an oil groove. The inner drive gear defines a plurality of inner gear teeth. The outer driven gear defines a plurality of outer gear teeth operatively configured to engage with the inner gear teeth. The outer drive gear may define a plurality of passageways to form a hydrodynamic film between the outer driven gear and the housing. Alternatively, a high pressure oil pump may feed oil into the oil groove in order to distribute a hydrodynamic film.
Abstract:
A method for thermal management of a motor vehicle engine includes one or more of the following: determining a current lube oil temperature; determining a lube oil temperature for optimal friction; turning on piston cooling jets based on the current lube oil temperature and the lube oil temperature for optimal friction; and turning off the piston cooling jets.
Abstract:
A method for thermal management of a motor vehicle engine includes one or more of the following: determining a current lube oil temperature; determining a lube oil temperature for optimal friction; turning on piston cooling jets based on the current lube oil temperature and the lube oil temperature for optimal friction; and turning off the piston cooling jets.
Abstract:
Variable displacement pumps and methods of pumping a fluid are provided. An example pump may include a housing having an inlet and an outlet, a rotor fixed for rotation with a shaft, the shaft rotatably mounted within the housing, and a plurality of radially extending vanes slidably disposed in the rotor. The pump may further include a pivotable ring member defining at least in part a control chamber about the rotor, wherein the ring member is pivotable within the housing to vary an eccentricity of the ring member with respect to the rotor. The ring member is configured to shift a pivot position of the ring member from a first pivot position to a second pivot position displaced from the first pivot position.
Abstract:
An internal combustion engine includes an engine block including a plurality of cylinders. A cylinder head is mounted to the engine block and includes intake and exhaust passages in communication with the plurality of cylinders. A cylinder head cover is mounted to the cylinder head and defines a cavity between the cylinder head and the cylinder head cover. An oil passage is disposed in the cavity and includes at least one oil jet for spraying oil at a surface of the cylinder head that is heated by the exhaust passages.