Abstract:
A computer controlled machining system is provided, and includes a multi-axis machining device that is configured to produce a workpiece based on a part print, which outlines nominal dimensions for the workpiece. A dimensional measuring device is configured to take or determine measured dimensions of the workpiece. A compensation processor is configured to take the measured dimensions from the dimensional measuring device and compare them to the nominal dimensions, and to determine a plurality of deviation sets from such comparison. The compensation processor transfers the deviation sets to the multi-axis machining device, which shifts a machine coordinate system based on the deviation sets.
Abstract:
A grinder assembly includes a spindle selectively rotatable about a central axis. The grinder assembly also includes a grinding wheel attachable to and detachable from the spindle. The grinding wheel is rotatable about the central axis when attached to the spindle. The grinder assembly further includes an adaptor cooperating with the spindle and the grinding wheel to provide a quick attachment and detachment of the grinding wheel with the spindle. The adaptor includes a plurality of first teeth extending outwardly relative to the spindle and a plurality of second teeth extending outwardly relative to the grinding wheel. The first and second teeth cooperate with each other to selectively attach the grinding wheel to the spindle and prevent independent rotation of the grinding wheel relative to the spindle.
Abstract:
A self-centering grinding wheel assembly that includes a spindle shaft including a conical-shaped end, a grinding wheel, and a grinding wheel adapter. The grinding wheel adapter affixed to the grinding wheel. A plurality of alignment members disposed radially within the grinding wheel adapter. Each of the plurality of alignment members include a tapered surface that conforms to a conical end of the spindle shaft. The plurality of alignment members slide radially with the grinding wheel adapter. The plurality of alignment members self-center the grinding wheel adapter on the spindle shaft in response to the grinding wheel adapter being assembled to the conical end of the conical shaft.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.
Abstract:
A grinder assembly includes a spindle selectively rotatable about a central axis. The grinder assembly also includes a grinding wheel attachable to and detachable from the spindle. The grinding wheel is rotatable about the central axis when attached to the spindle. The grinder assembly further includes an adaptor cooperating with the spindle and the grinding wheel to provide a quick attachment and detachment of the grinding wheel with the spindle. The adaptor includes a plurality of first teeth extending outwardly relative to the spindle and a plurality of second teeth extending outwardly relative to the grinding wheel. The first and second teeth cooperate with each other to selectively attach the grinding wheel to the spindle and prevent independent rotation of the grinding wheel relative to the spindle.
Abstract:
A lamination pack for a motor and method of forming the lamination pack is provided. The method includes inserting a plurality of conductor bars into a plurality of rotor slots defined by a lamination stack such that opposing bar ends of the conductor bars extend from opposing end faces of the lamination stack, skewing the lamination stack and the conductor bars to a skew angle relative to a rotation axis of the lamination stack, and subsequently bending the bar ends of the conductor bars in opposing radial directions to a locking angle greater than the skew angle, to lock each of the conductor bars in its respective rotor slot. The bent bar ends exert a compressive axial locking force on the lamination stack to prevent axial and radial movement of the laminations in the lamination stack and to prevent axial movement of the conductor bars relative to the lamination stack.
Abstract:
A method of forming a rotor includes inserting a conductor bar into a slot defined by a lamination stack to define a gap between the conductor bar and the lamination stack. The method further includes, after inserting, swelling the conductor bar within the slot to fill the gap and form the rotor. A rotor is also disclosed.
Abstract:
A rotor casting includes a lamination stack and a cast structure including proximal and distal cast end rings respectively adjacent proximal and distal end faces of the lamination stack. Cast axial ribs are distributed radially on a peripheral surface of the lamination stack and extend between the proximal and distal cast end rings. Cast feed members extend axially from the proximal cast end ring and are respectively positioned radially between an adjacent pair of axial ribs. In one example, cast bar segments integral to the proximal and distal cast end rings are formed in axial slots of the lamination stack. In one example, a bar insert in each axial slot has insert ends that extend respectively from the proximal and distal end faces of the lamination stack and are fully encapsulated respectively in the proximal and distal cast end rings. A method of forming the rotor casting is provided.
Abstract:
A part transfer system includes a robotic arm, and an end effector attached to the robotic arm. The end effector includes a locating pin that is operable to engage an existing part feature of a part. The presence of the existing part feature is required for the intended use of the part, and therefore serves a function of the part other than a transfer function. The existing part feature defines a circular aperture disposed on a feature plane. The locating pin includes an engagement portion that extends along a longitudinal axis of the at least one locating pin. The engagement portion includes a diameter that is tapered along the longitudinal axis such that the engagement portion of the locating pin engages a radial inner edge of the circular aperture on the feature plane along an approximately annular contact ring disposed about a circumference of the tapered portion.