Abstract:
A spring-damper assembly for a suspension corner employed in a vehicle having a vehicle body and a road wheel includes a fluid spring configured to suspend the vehicle body relative to the road wheel. The spring-damper assembly also includes a damper configured to attenuate compression and rebound oscillations of the fluid spring. The spring-damper assembly additionally includes a spring-seat housing configured to retain the fluid spring and establish a position of the fluid spring relative to the damper. The spring-seat housing includes an inner surface defining a contour configured to guide the fluid spring upon compression thereof around the damper and define a non-linear stiffness of the fluid spring. A vehicle having such a spring-damper assembly is also provided.
Abstract:
An apparatus for controlling force of a magnetic lead screw actuator includes a magnetic lead screw actuator, an external control module and at least one sensor device integrated within the magnetic lead screw actuator. The magnetic lead screw actuator includes an electric machine, a rotor, and a translator. The rotor includes a rotor magnet assembly forming first helical magnetic threads along the rotor and the translator includes a translator magnet assembly forming second helical magnetic threads along the translator. Rotation of the rotor by the electric machine effects linear translation of the translator by interaction of the first and second helical magnetic threads. The external control module is electrically operatively coupled to an electric machine controller of the magnetic lead screw actuator. The at least one sensor device integrated within the magnetic lead screw actuator is configured to measure a parameter indicative of a relative displacement between the rotor and the translator and this parameter is provided as feedback to the electric machine controller.
Abstract:
A system and method for wirelessly controlling a shape memory alloy (SMA) actuator using magnetic resonant coupling (MRC). The SMA actuator is part of a receiver circuit including an actuator coil, where the SMA actuator is configured into a certain shape. The system includes a transmitter circuit having a transmitter coil and a controller, where the transmitter coil receives an AC current that causes the transmitter coil to generate an oscillating magnetic field in resonance with the actuator coil in the receiver circuit and be magnetically coupled thereto. The current induced in the actuator coil creates heat that reconfigures the SMA actuator to provide the actuation.